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In this paper, a feasible path-based branch and bound (B&B) algorithm is presented for solving mixed-integer 
nonlinear programming problems with highly nonconvex nature. The main advantage of this novel algorithm, 
comparing to the conventional branch and bound algorithms, is that when solving a nonlinear programming 
(NLP) subproblem at each node, our previously proposed hybrid steady-state and time-relaxation-based 
optimisation algorithm is employed. This approach allows circumventing complex initialisation procedure and 
overcoming the convergence difficulties of process simulations. During B&B, the solution from a parent node is 
used to initialize the NLP subproblems at the child nodes to improve the efficiency of this algorithm. The 
capability of the proposed algorithm is illustrated by solving a dividing wall column optimisation case for 
separation of a ternary mixture. The optimal design is obtained in 2, 712 CPU s with TAC 43,344 $ y−1.   

1. Introduction
Many optimisation problems arising in process synthesis, design and intensification are modeled as Mixed-
Integer Nonlinear Programming (MINLP) problems. By using integer variables, discrete decisions are enabled, 
e.g., to select process equipment or assignment of task with optimisating design and operation simultaneously.
It is also possible to introduce discrete quantities, such as the number of trays in a distillation column (Kronqvist
et al., 2018). Moreover, the incorporation of nonlinear rigorous models allows accurately modeling of production
processes and unit operations. As a result, the MINLP problems are often highly nonconvex and nonlinear,
which are difficult to solve.
MINLP can be divided into two classes - convex MINLP and nonconvex MINLP. A convex MINLP problem is
defined as such only when the discrete binaries are relaxed as continuous variables, resulting a convex NLP
problem (Trespalacios and Grossmann, 2014). There are several deterministic algorithms for solving convex
MINLP problems which are mainly based on two approaches – MILP decomposition and branch and bound
(Kronqvist and Lundell, 2019). The main idea of the branch and bound (B&B) method (Gupta and Ravindran,
1985) is used in most of the current MINLP deterministic solvers. When a tree search is performed, the integer
variables are successively fixed at the corresponding nodes of the tree, yielding relaxed NLP subproblems. It is
only attractive if subproblems are inexpensive to solve, or only a few of them need to be solved. In contrast to
B&B, the main idea of the MILP/NLP decomposition approaches is to iteratively construct a MILP approximation
by successive linearization of nonlinear constraints without using a search tree. Algorithms include outer
approximation (Viswanathan and Grossmann, 1990), the extended cutting plane method (ECP) (Westerlund
and Pettersson, 1995), extended supporting hyperplane (ESH) (Kronqvist et al., 2015) and generalised bender
decomposition (GBD) (Geoffrion, 1972). Apart from above algorithms, Raman and Grossmann (1994) brought
up an alternative representation of MINLP - Generalised Disjunctive Programming (GDP), which involves
Boolean and continuous variables that are specified in algebraic constraints, disjunctions and logic propositions.
These GDP problems can be solved by dedicated solution algorithms such as logic-based OA (Türkay and
Grossmann, 1996) and GDP B&B (Lee and Grossmann, 2000). As pointed out by Ma and Li (2022), most of the
aforementioned algorithms rely on the assumption that the relaxed NLP subproblems are convex and can be
solved when they are feasible. Initial points need to be selected very carefully, which is usually done case by
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case and using trial and error. However, nonconvex constraints are usually required for accurate modeling of 
many real-world problems, particularly in chemical engineering. The most common global deterministic method 
to solve nonconvex MINLP is spatial B&B. Although this method can theoretically find a global optimum, they 
can be very computational demanding, due to the generation of a huge global search tree, which may prevent 
the method to find an optimal solution within a reasonable time (Burre et al., 2022). 
In this paper, we develop a new solution approach - a feasible path-based branch and bound algorithm for highly 
nonconvex MINLP problems. Like conventional branch and bound method, a search tree needs to be created. 
The key difference is that a feasible path optimisation framework is applied for solving the relaxed NLP 
subproblem at each node. This combination tackles the convergence difficulties when highly nonconvex 
constraints are incorporated in the mathematical models, e.g., thermodynamic equilibrium models, MESH 
equations and rigorous models for distillation. The other superiority of our proposed novel B&B algorithm when 
dealing with large scale strongly non-convex MINLP problems is the robust initialisation procedure (Dowling and 
Biegler, 2015). Initial points are easy to choose and convergence can be guaranteed. The proposed algorithm 
is applied to a dividing wall column optimisation case for separation of a ternary mixture. A locally optimal 
solution of 43,344 $ yr−1 is found within 2,712 CPU s, whilst most existing MINLP commercial solvers fail to find 
a feasible solution. The obtained configuration of DWC and TAC are almost the same as the ones generated 
using specialized procedures in the literature. 

2. Problem Statement
The large scale highly nonconvex MINLP problems have the following general form: 

min
𝐱𝐱,𝐲𝐲

𝑓𝑓(𝐱𝐱,𝐲𝐲) 

(1)𝑠𝑠. 𝑡𝑡.  𝐡𝐡(𝐱𝐱,𝐲𝐲) = 0 
       𝐠𝐠(𝐱𝐱, 𝐲𝐲) ≤ 0 
       𝐱𝐱 ∈ 𝑅𝑅𝑛𝑛, 𝐲𝐲 ∈ {0, 1}𝑠𝑠 

where 𝑓𝑓(𝐱𝐱, 𝐲𝐲) usually represents the objective function such as total annualised cost (TAC), 𝐡𝐡(𝐱𝐱, 𝐲𝐲) = 0 are 
equations describing process performance such as material balance and energy balance equations, 𝐠𝐠(𝐱𝐱, 𝐲𝐲) ≤ 0 
are inequality constraints that define process design requirements such as product specifications. The variable 
𝐱𝐱 is a set of vector, representing continuous variables with dimension 𝑛𝑛. The variable y is a set of discrete 
variables, and, we constrain it to binary variables without loss of generality.  
If partitioning continuous variables 𝐱𝐱 into two sets - independent variables 𝐱𝐱I and dependent variables 𝐱𝐱D, 𝐱𝐱D 
can be expressed using an implicit function of 𝐱𝐱I. Assuming the dimension of 𝐱𝐱D is 𝑚𝑚, then problem in Eq(1) 
(i.e., the full space model) can be translated to the reduced space model in Eq(2) in below: 

min
𝐱𝐱𝐈𝐈,𝐲𝐲

𝑓𝑓(𝐱𝐱𝐈𝐈, 𝐲𝐲) 

(2) 𝑠𝑠. 𝑡𝑡.  �̃�𝐡(𝐱𝐱𝐈𝐈,𝐲𝐲) = 0 
       𝐠𝐠�(𝐱𝐱𝐈𝐈, 𝐲𝐲) ≤ 0 
       𝐱𝐱𝐈𝐈 ∈ 𝑅𝑅𝑛𝑛−𝑚𝑚, 𝐲𝐲 ∈ {0, 1}𝑠𝑠 

The objective of this work is to develop a novel branch and bound algorithm called feasible-path based branch 
and bound algorithm hybrid with steady state and time-relaxation based algorithm (denoted as FPBB-HB) to 
solve the above stated problem in Eq(2). 

3. Solution Approach
The complete solution approach is illustrated in Figure 1. As seen from Figure 1, a rooted decision tree is firstly 
constructed with nodes and branches as a framework for the solution process. The root node is denoted as 𝑛𝑛0, 
at which an NLP problem in Eq(3) is solved. This NLP problem is a relaxation of the problem in Eq(2) with all 
the binary variables relaxed to be 0-1 continuous variables. 

min
𝐱𝐱𝐈𝐈,𝐲𝐲𝐑𝐑𝐢𝐢

𝑓𝑓(𝐱𝐱𝐈𝐈, 𝐲𝐲) 

(3) 𝑠𝑠. 𝑡𝑡.  �̃�𝐡(𝐱𝐱𝐈𝐈,𝐲𝐲) = 0 
 𝒈𝒈�(𝐱𝐱𝐈𝐈,𝐲𝐲) ≤ 0 

      𝐱𝐱𝐈𝐈 ∈ 𝑅𝑅𝑛𝑛−𝑚𝑚, 𝐲𝐲 ∈ (0, 1)𝑠𝑠 
where 𝑓𝑓(𝐱𝐱I, 𝐲𝐲), �̃�𝐡(𝐱𝐱I, 𝐲𝐲) and 𝐠𝐠�(𝐱𝐱I, 𝐲𝐲) are presumed to be twice differentiable, 𝐲𝐲 is a set of continuous variables 
between 0 and 1. 
After solving the root node, if all the binary variables relaxed are already 0 or 1, the algorithm will be terminated 
with the integer solution from root node. Otherwise, two new child nodes are created. At each node 𝑛𝑛𝑖𝑖, the total 
number of binary variables is 𝑠𝑠. Some binary variables are fixed to 0 or 1, whilst the remaining binary variables 
are still relaxed between 0 and 1. The fixed set of binary variables is denoted as 𝐲𝐲Fi = �𝑦𝑦𝐹𝐹1𝑖𝑖 ,𝑦𝑦𝐹𝐹2𝑖𝑖 , … , 𝑦𝑦𝐹𝐹𝐹𝐹𝑖𝑖 � and the 

992



relaxed set is denoted as 𝐲𝐲Ri = �𝑦𝑦𝑅𝑅1𝑖𝑖 ,𝑦𝑦𝑅𝑅2𝑖𝑖 , … , 𝑦𝑦𝑅𝑅𝑅𝑅𝑖𝑖 �, where 𝑝𝑝 + 𝑞𝑞 equals to 𝑠𝑠. The NLP subproblem at node 𝑛𝑛𝑖𝑖 can 
be formulated as problem in Eq(4). 

min
𝑥𝑥𝐼𝐼,𝑦𝑦𝑅𝑅𝑖𝑖

 𝑓𝑓�𝐱𝐱I, 𝐲𝐲Ri ; 𝐲𝐲Fi � 

(4) 𝑠𝑠. 𝑡𝑡.  �̃�𝐡�𝐱𝐱I, 𝐲𝐲Ri ; 𝐲𝐲Fi � = 0 
       𝐠𝐠��𝐱𝐱I, 𝐲𝐲Ri ; 𝐲𝐲Fi � ≤ 0 
       𝐱𝐱I ∈ 𝑅𝑅𝑛𝑛−𝑚𝑚, 𝐲𝐲Ri ∈ (0, 1)𝑅𝑅 ,𝐲𝐲Fi ∈ {0, 1}𝑅𝑅 

At each node 𝑛𝑛𝑖𝑖, our previous proposed hybrid steady-state and time-relaxation-based optimisation algorithm is 
employed to solve the NLP subproblem (i.e. problem in Eq(4)). The main idea of the hybrid algorithm is that, a 
steady state simulation is performed first. If it fails, a PTC simulation using the tolerance-relaxation integration 
method is then conducted. More details about this algorithm can be found in the work of Ma et al. (2020). It is 
demonstrated that the hybrid algorithm is effective to address the convergence difficulties and get a locally 
optimal solution even for large-scale highly nonconvex NLP problems. If there is no feasible solution at node 𝑛𝑛𝑖𝑖, 
then this node is pruned. Other nodes at node set 𝜁𝜁 will be selected based on the depth-first strategy. If an 
optimal solution 𝑓𝑓𝑖𝑖∗ exists, 𝐲𝐲Ri∗ shall be checked. If all the components in 𝐲𝐲Ri∗ are binaries, it means solution at 
node 𝑛𝑛𝑖𝑖  is an optimal integer solution. It shall be incumbent only if this is the best optimal integer solution till the 
current iteration. At earlier iterations, with no integer solution to the MINLP problem, the upper bound denoted 
as 𝑓𝑓𝑢𝑢𝑢𝑢  is set as infinite. At this iteration, 𝑓𝑓𝑢𝑢𝑢𝑢 will be updated to 𝑓𝑓𝑖𝑖∗, until next best integer solution occurs. If other 
optimal integer solution already exists and possess better value than 𝑓𝑓𝑖𝑖∗, node 𝑛𝑛𝑖𝑖 shall be pruned. 
 

  

Figure 1 Schematic of branch and bound rooted tree 

If some components in 𝐲𝐲𝑅𝑅𝑖𝑖∗  are still fractions, node 𝑛𝑛𝑖𝑖 will be treated as a parent node and further branched 
where one relaxed binary variable in 𝐲𝐲Ri∗ is selected and forced to 0 or 1. Hereby two child nodes 𝑛𝑛𝑗𝑗 and 𝑛𝑛𝑘𝑘 are 
to be created. Obviously, only one binary variable in nodes 𝑛𝑛𝑗𝑗 and 𝑛𝑛𝑘𝑘 is different from their parent node 𝑛𝑛𝑖𝑖. The 
optimal solution from parent node is used to initialise the NLP subproblems in its child nodes. The child nodes 
will be explored again using FPBB-HB algorithm in Figure 2.  
The FPBB-HB algorithm is implemented in Python. The flowsheet models are built in the equation orientated 
environment (Aspen Custom Modeler). Data exchanging with Python is via its automation interface. As gradient-
based algorithms usually demonstrate better performance when solving large-scale NLP problems with a wide 
range of constraints and variables, open source optimiser slsqp (Kraft, 1988) is used to solve each NLP 
subproblem. 
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Figure 2 FPBB-HB algorithm  

4. Computational Study 
To illustrate the capability and superiority of the proposed FPBB-HB algorithm, one example is taken from 
Montonati et al. (2022). In this example, a dividing wall column (DWC) is used for the separation of a ternary 
mixture consisting of n-pentane, n-hexane and n-heptane. DWC is a practical implementation which integrates 
two columns into a single shell by the addition of a wall that physically separates the feed side from the side 
product draw off section. It has been proven that up to 30% energy savings can be achieved together with space 
and capital cost reduction (Babi et al., 2016). Optimal design of DWC is not straightforward since it possesses 
a complex structure with additional design parameters to be considered, such as vapour and liquid split ratio 
and side draw flowrate. 
Table 1 provides information on feed conditions, product specifications, and column operating pressure which 
is fixed in this example. The Peng-Robinson model is selected to calculate phase equilibrium. Medium pressure 
steam is utilised as hot utility. 

Table 1 Data for hydrocarbon mixture 

Mixture components A/B/C n-pentane/n-hexane/n-heptane 
Composition mole % 40/20/40 
Pressure (atm) 2 
Product purities 0.99/0.92/0.99 
Feed flowrate (kmol h−1) 100 
Feed condition Saturated liquid 
The mathematical model for DWC is built using MESH equations and rigorous models. The bypass efficiency 
of each tray is treated as binary variables and the summation of them equals to the number of stages. The 
decision variables include bypass efficiency, distillate flow rate, reboiler vaporization fraction, side draw fraction, 
liquid and vapour split ratio. We use the proposed FPBB-HB algorithm to solve this example. The optimisation 
problem involves 180 binary variables, 21,167 continuous variables and 18,965 constraints. We generate a 
locally optimal solution of 43,344 $ y−1 within 2712 CPU s. The optimal results are provided in Table 2. From 
Table 2, it can be observed that in the optimal design, there are 46 trays in the main column and 23 trays in the 
prefractionator column. The optimal design is illustrated Figure 3. The computational performance of the 
proposed FPBB-HB algorithm is presented in Table 3. From Table 3, it shows 8 nodes are created and 
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investigated during B&B, and all the 8 NLP subproblems have been solved successfully. Interestingly, during 
B&B, three feasible integer solutions are found. Two nodes are pruned due to the optimal solution is larger than 
the upper bound. In the final suboptimal integer solution, all the bypass efficiencies are at 0 or 1.  

 

Figure 3 Optimal design of the DWC 

Table 2 Optimal results comparison for case study 

Column   DWC(Molecular tracking) DWC(FPBB-HB) 
Pre* Main Pre Main 

Number of stages 23 46 21 46 
Feed stage/ 
Interconnection stages 

14 9, 33 14 5, 26 

Side stream stages  23  16 
Reflux ratio  1.95  1.968 
Liquid to pre(kmol/h)  33.5  24.9 
Vapour to pre(kmol/h)  84.5  70.2 
Condenser duty(kW)  815.8  821.87 
Reboiler duty(kW)  898.6  900.81 
Total Investment Cost ($)  134,130  134,185 
Total Operating Cost ($/y)  29,844  29,926 
Total Annual Cost ($/y)  43,258  43,344 
*Pre – Prefractionator Column 

Table 3 Nodes evaluated and computational performance of FPBB-HB algorithm for DWC example 

Item FPBB-HB 
CPU time (s) 2,712 
Number of nodes created 8 
NLP subproblem solved 8 
Number of feasible integer solutions 3 
Number of nodes pruned 2 
We also compare the optimal design with that from literature, which is generated using the special procedures. 
The comparative results are also provided in Table 2. From Table 2, it can be observed that the configuration 
obtained by using FPBB-HB is very similar to the configuration in the literature. The method used in the literature 
is a special procedure, which requires short-cut models to determine the initial design parameters of DWC, 
followed by equilibrium-staged simulation, molecular tracking application and finally using many simulations to 
investigate the effects of varying parameters in the flowsheet to find an optimal design. The design procedure 
is tailored and computational intensive for design of DWC. By applying our algorithm to the same case, the total 
computational time is 2,712 CPU s. We also solve this example using some commercial solvers including 
DICOPT (outer approximation method), BARON (Branch and reduce algorithm) and ANTIGONE (special branch 
and bound algorithm). It is found that all commercial solvers fail to find a feasible solution within 1 h. 
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5. Conclusions 
In this work, a novel feasible-path based branch and bound algorithm is presented, where the branch and bound 
method is used to systematically fix part of the binary variables and generate relaxed NLP subproblems, while 
the hybrid steady state and time relaxation-based feasible path algorithm is used to solve the derived NLP 
subproblems. In the generated B&B tree, the solution from the parent node is provided as a warm start for the 
NLP problems at the child nodes, which increases the computational efficiency. The computational results of 
optimising the DWC configuration incorporating rigorous models demonstrate that the proposed algorithm can 
find a locally optimum with very good convergence performance. The optimal configuration of DWC for 
separation of a ternary mixture is found within a reasonable time. It should be noted that the proposed algorithm 
cannot guarantee a global optimum since the nonconvex NLP subproblems are solved to local optimality for 
efficiency. In the future, this novel algorithm can be applied to solving more process intensification examples 
such as reactive distillation and biotechnology applications. It can also be tested on the process synthesis 
coupled with superstructures. 
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