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The energy efficiency of industrial plants is an important matter regarding the goals of a climate-neutral economy 
by 2050. To increase the energy efficiency of industrial plants, sophisticated controllers that optimise the 
performance of the plants, with regards to the minimisation of their energy consumption, are considered. Such 
a control strategy is an explicit solution of model predictive control (MPC) which meets the requirements of the 
implementation of optimal control along with the ability to be easily applicable in practice as the optimisation 
problem is not solved in the online phase. This paper proposes the idea of self-tunable approximated explicit 
MPC. The tuning of approximated explicit model predictive control is performed through linear interpolation 
between two optimal explicit MPC controllers. The explicit controllers are constructed based on different input 
penalty matrices - the upper and lower bound on penalty matrix R. A novel idea of self-scaling of penalty 
matrix R is presented. Based on the distance of the reference value from the steady state, the aggressiveness 
of the controller is adjusted whenever a change of reference occurs. The proposed idea of this online self-tuning 
of the explicit controller is applied to a system of a laboratory heat exchanger. As the aggressiveness of the 
approximated controller is adjusted during control, improvement in control performance is achieved compared 
to the explicit controllers utilizing the lower and the upper bound on penalty matrix R during the whole control. 
In addition, the proposed method also leads to decreased energy consumption associated with the volume of 
the heating medium. After 1 hour of plant operation, the heating medium savings reach 80 ml and the associated 
energy savings are approximately 2 kJ. 
 

1. Introduction 
The achievement of the plan concerning the climate-neutral economy by 2050, requires a reduction of global 
CO2 emissions to net zero. This aim requires the implementation of CO2 and energy-reducing technologies on 
a global scale in every part of the industry (Lameh et al., 2021). One way to increase the efficiency of industrial 
plants is to use more sophisticated controllers to optimise the performance of the plants, concerning the 
minimisation of energy consumption. Minimisation of energy consumption goes hand in hand with the 
minimisation of CO2 production. This can be achieved by considering MPC to control plants in the industry 
(Morato et al., 2020). MPC can consider the future behaviour of the plant and based on this knowledge and 
tuning of various parameter, it optimises the control performance of the plant. Therefore, the selection of the 
tuning parameters dictates the control performance of the plant (De Schutter et al., 2020). As a consequence, 
the real-time tunability of these weighting matrices is a desired property of the MPC framework (Sorourifar et 
al., 2021). In Moumouh et al. (2019), the authors utilize an online learning algorithm based on artificial neural 
network to adjust the MPC tuning parameters. Another online tuning approach in Al-Ghazzawi et al. (2001) 
exploits the sensitivity expressions for the closed-loop response with respect to the MPC tuning parameters. 
Despite all its advantages, the practical implementation of the MPC framework is quite narrowed due to the 
strictly limited memory and computational capacity of industrial computers. To overcome this obstacle, the 
authors in Bemporad et al. (2002) introduced the so-called explicit MPC. Explicit MPC evaluates the parametric 
solution of the MPC for all possible combinations of initial conditions before the real-time control. During the 
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real-time control, explicit MPC evaluates only the point-location problem and simple multiplication to compute 
the optimal control input. The disadvantage of explicit MPC is that the evaluation of the parametric solution, 
which is computed before real-time control, is very computationally demanding. Therefore, any tuning of explicit 
MPC is computationally very expensive.  
In Baric et al. (2005), the authors present the parametrisation of the explicit MPC by the input penalty. Despite 
the significant contribution of this work, this approach is only applicable to MPC optimisation problems with a 
linear cost function. In Klaučo and Kvasnica (2018), another idea of real-time tunable explicit MPC was 
introduced, which was not limited only to linear optimization problems. This work presented a form of 
approximated explicit MPC, in which adjusting the input penalty in a certain range is possible in real-time control. 
In this approach, one stores the explicit MPC precomputed for two different values of tuning parameters. During 
the real-time control, the user can select the tuning parameter within the range of the two different values of 
tuning parameters. Based on linear interpolation, the approximated control input is computed without the 
necessity to recompute the explicit MPC again. Based on linear interpolation, the approximated control input is 
computed without the necessity to recompute the explicit MPC again. A novel work by Oravec and Klaučo, 
(2022) follows up on the idea of real-time tunable approximated explicit MPC and guarantees the closed-loop 
system stability and recursive feasibility.  
The previous works related to tunable explicit MPC did not focus on the parameters tuning strategy itself. This 
work presents an extension of the tunable explicit MPC introduced in Klaučo and Kvasnica, (2018). It provides 
the significant ability to adjust the aggressiveness of the controller without the necessity to intervene and tune 
the penalty matrices during control. The idea is to offer a self-tuning algorithm to adjust the input penalty based 
on the reference value and current operating conditions. This extension is demonstrated considering a model 
of a laboratory heat exchanger. Heat exchangers are widely used in various branches of the industry. Therefore, 
their optimised operation corresponds with climate-neutral policies. To demonstrate the benefits of the proposed 
approach in terms of climate neutrality, the energy consumption of the heat exchanger is analysed. 

2. Preliminaries 
In this section, the theoretical background associated with the explicit model predictive control is briefly 
explained. Next, its modification to the online tunable explicit model predictive control is introduced. 

2.1 Explicit model predictive control 

Let us consider the following reference tracking formulation of MPC problem: 

min
𝑢𝑢0,…,𝑢𝑢𝑁𝑁−1

� �(𝑥𝑥ref − 𝑥𝑥𝑘𝑘)T𝑄𝑄(𝑥𝑥ref − 𝑥𝑥𝑘𝑘) + 𝑢𝑢𝑘𝑘T𝑅𝑅𝑢𝑢𝑘𝑘�,
𝑁𝑁−1

𝑘𝑘=0
 (1) 

s. t.  𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 , (2) 

∆𝑢𝑢𝑘𝑘 = 𝑢𝑢𝑘𝑘 − 𝑢𝑢𝑘𝑘−1, (3) 

𝑥𝑥min ≤ 𝑥𝑥𝑘𝑘 ≤ 𝑥𝑥max, (4) 

𝑢𝑢min ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢max, (5) 

∆𝑢𝑢min ≤ ∆𝑢𝑢𝑘𝑘 ≤ ∆𝑢𝑢max, (6) 

𝑥𝑥0 = 𝑥𝑥(𝑡𝑡),𝑢𝑢−1 = 𝑢𝑢∗(𝑡𝑡 − 𝑇𝑇s), (7) 

where k = 0, ..., N-1 denotes the step of prediction horizon N, t denotes time, x is the vector of system states, u 
is the vector of the input variable. A represents the discrete-time system state matrix, and B is the discrete-time 
input matrix. Vectors umin, umax, xmin, xmax, ∆umin, ∆umax are the limit values on the input, state, and change of the 
input variable, respectively. The positive semi-definite matrix Q ≥ 0 penalises the control error, i.e., the difference 
between the current system state and its reference value xref. The positive definite matrix R > 0 penalises the 
value of the input variable. Ts represents sampling time and symbol * denotes the optimal solution. The aim of 
the optimisation problem in Eq(1) – Eq(7) is to minimise the control error as well as the input variable, which is 
interconnected with control costs. By tuning the weight matrices Q and R, an optimal control input can be 
obtained according to requirements on control performance and energy savings. By updating the initial condition 
in Eq(7) with current measurement and previous optimal control input, MPC becomes a receding control 
strategy. 
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In many practical applications, it is often impractical or even impossible to implement a control strategy, in which 
solving an optimisation problem is necessary. The reason is that the industrial hardware is often limited in terms 
of computational capacity and available memory. In the fundamental work by Bemporad et al. (2002), the 
authors show how to perform offline all the computations necessary for the implementation of MPC, while 
preserving all its above-mentioned characteristics. In the offline phase, the explicit solution of the optimisation 
problem is obtained for the whole set of feasible initial conditions – parameters 𝜃𝜃. The parametric solution of 
Eq(1) – Eq(7) acquires the form of a piece-wise affine control law defined over a union of r critical regions: 

𝑢𝑢(𝑡𝑡) =  �
𝐹𝐹1𝜃𝜃 + 𝑔𝑔1    if    𝜃𝜃 ∈ ℛ1,

⋮
𝐹𝐹𝑟𝑟𝜃𝜃 + 𝑔𝑔𝑟𝑟     if    𝜃𝜃 ∈ ℛ𝑟𝑟 .

  (8) 

In Eq(8), F and g, respectively, represent the slope and affine section of the control law corresponding to each 
critical region ℛ. 
In the online phase, a real-time control is realised. Based on identifying the critical region where the parameter 
value lies, the optimal value of control input is calculated considering the corresponding control law.  

2.2 Tunable explicit model predictive control 

As the optimisation problem stated in Eq(1) – Eq(7) is precomputed for a specific combination of weight matrices 
Q and R, it is not possible to tune the explicit model predictive controller online. In Klaučo and Kvasnica (2018), 
the authors present the approximated explicit MPC using linear interpolation. The idea is to construct two explicit 
controllers with two different weight matrices R, while penalty Q remains fixed. More specifically, the setup of 
the two controllers is chosen such that Rl < Ru, where Rl = diag(rl,1,…,rl,m) and Ru = diag(ru,1,…,ru,m) denote the 
lower and the upper bound on penalty matrix R, respectively. In the online phase, the objective is to interpolate 
between the optimal control input ul corresponding to the explicit MPC associated with Rl and the control input 
uu associated with Ru. When a specific value of penalty R = diag(r1,…,rm) is determined such that rl,i ≤ ri ≤ ru,i, for 
i = 1,…,m, the approximated control action is calculated as: 

𝑢𝑢(𝜃𝜃,𝑅𝑅) = 𝑅𝑅 �
𝑎𝑎1
⋮
𝑎𝑎𝑚𝑚

� + �
𝑏𝑏1
⋮
𝑏𝑏𝑚𝑚
�, (9) 

where 

𝑎𝑎𝑖𝑖 = 𝑢𝑢l,𝑖𝑖−𝑢𝑢u,𝑖𝑖

𝑟𝑟l,𝑖𝑖−𝑟𝑟u,𝑖𝑖
, 𝑏𝑏𝑖𝑖 = 𝑟𝑟l,𝑖𝑖 𝑢𝑢u,𝑖𝑖−𝑟𝑟u,𝑖𝑖 𝑢𝑢l,𝑖𝑖

𝑟𝑟l,𝑖𝑖−𝑟𝑟u,𝑖𝑖
 .   (10) 

The ability to tune the controller online is achieved at the expense of storing and evaluating two explicit 
controllers. Moreover, the optimality is sacrificed as the control inputs are evaluated using linear interpolation. 
On the contrary, the ability to adjust the aggressiveness of the explicit model predictive controller online, can be 
a very beneficial tool in practice. 

3. Self-tuning of explicit model predictive control 
In many practical applications, it is often beneficial to modify the controller parameters according to current 
operating conditions. The necessity to adapt the controller may occur due to changing properties of the 
controlled system or requirements on control performance. In this section, the idea of self-online tuning is 
presented. It provides the ability to adjust the aggressiveness of the controller without the necessity to intervene 
and tune the penalty matrices during control.  
The need to adjust the controller online may often arise from tracking a time-varying reference. This paper 
focuses on adjusting the matrix R whenever the reference value is changed. The further the reference value is 
from the steady state, the more aggressive controller is tuned. The procedure of tuning the controller is based 
on evaluating the difference between the reference and the steady state, and using this deviation to scale the 
penalty matrix R. Let us first determine the maximal possible deviation from the steady state based on the 
constraints on system states: 

𝑑𝑑max = max (|𝑥𝑥min|, 𝑥𝑥max)  (11) 

The maximal deviation from the steady state dmax in Eq(11) also corresponds to the maximal absolute value of 
reference which can be set during control. Based on the information about the maximal deviation from the steady 
state, the ratio p between the current reference and the maximal deviation is evaluated as 
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𝑝𝑝 =
|𝑥𝑥ref|
𝑑𝑑max

 . (12) 

Note that the ratio p can acquire values from interval 〈0, 1〉 as |xref| ≤ dmax. Therefore, the ratio p represents a 
way how to normalise the deviation from steady state and is exploited to scale the penalty matrix R. 
If the system has only one state (or if only one output out of multiple states is controlled), the ratio p is scalar 
and can be directly utilised in scaling the penalty matrix R. If multiple states are controlled, p becomes a vector. 
In such a case, it is suggested to exploit the maximal element of vector p to tune the controller:  

𝑝𝑝 = max �
|𝑥𝑥ref|
𝑑𝑑max

� . (13) 

The ratio p is utilised to scale the penalty matrix R in the following way: 

𝑅𝑅 = (𝑅𝑅𝑢𝑢 − 𝑅𝑅𝑙𝑙)(1 − 𝑝𝑝) +  𝑅𝑅𝑙𝑙 . (14) 

It can be seen in Eq(14) that with increasing value of the ratio p, the value of R approaches Rl. On the contrary, 
if p decreases, R converges to Ru. In other words, higher ratio p leads to more aggressive controller, as the 
control inputs are penalised more compared to the setup associated with Ru.  

4. Case study 
Heat exchangers are widely used in various branches of the industry. Therefore, the proposed control method 
was investigated on an experimentally identified model of a laboratory liquid-to-liquid plate heat exchanger, see 
Figure 1. The controlled variable is the temperature T of heated liquid at the outlet of the heat exchanger 
(Armfield, 2007). The manipulated variable is the volumetric flow q of the heating medium. For more detailed 
description of the plant and model identification see e.g., Oravec et al. (2019).  
 

 
 
Figure 1: Laboratory heat exchanger Armfield Process Plant Trainer PCT23: cold medium (1) and heating 
medium (2) pumps, cold medium (3) and hot medium (4) tanks, heat exchanger (5)   
 
The matrices of the state-space model of the system, discretised with sampling time Ts = 1 s, are 

𝐴𝐴 = 0.94, (15) 

𝐵𝐵 = 0.97. (16) 

One of the significant benefits of MPC is the ability to limit the values of the state, input, and output variables. 
Based on the physical limitations of the process, the input variable, its change, and the state variable are 
constrained in the following way: 

−16 °C ≤ 𝑥𝑥 ≤ 8 °C, (17) 

−5 ml s−1 ≤ 𝑢𝑢 ≤ 5 ml s−1, (18) 

−3 ml s−1 ≤ ∆𝑢𝑢 ≤ 3 ml s−1. (19) 

Note, that the states x and inputs u represent variables in the deviation form. The values of temperature and 
volumetric flow of the heating medium corresponding to zero steady state are Ts = 45 °C and qs = 6 ml s-1.  
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The adjustable parameters of the MPC optimisation problem are prediction horizon N and weight matrices Q 
and R. The length of the prediction horizon N was set to 20 steps. The tuning parameter Q penalizing the 
squared control error was set to Q = 10. The lower bound Rl and the upper bound Ru of weight matrix R 
penalizing the squared control input were set followingly: 

𝑅𝑅l = 5,  𝑅𝑅u = 100. (20) 

Subsequently, the explicit model predictive controllers were constructed based on both control setups, i.e., using 
the lower and upper bound on weight matrix R. Both controllers are necessary for the online phase for linear 
interpolation of the control action. As the adjustment of the weight matrix R depends on the change of reference 
value, tracking of multiple references was investigated in the control simulation. The reference temperature Tref 
was set to the following values: 49 °C, 39 °C, 33 °C, and 46 °C. The trajectory of the controlled variable can be 
seen in Figure 2a, and the corresponding trajectory of the manipulated variable can be seen in Figure 2b. In the 
legends of both figures, the control profiles utilizing the controller associated with Rl, are denoted with lower 
index “l”, and the control profiles corresponding to upper bound on R, i.e., Ru, are denoted with lower index “u”. 
Lower index “a” denotes the control profiles associated with approximated control inputs based on the linear 
interpolation described in Section 2.2. 

a) b) 

Figure 2: Comparison of the controlled variable (a) and the manipulated variable (b) generated by optimal explicit 
MPC and approximated controller   

It can be seen in Figure 2b that the profile of control inputs associated with Ru is damped as the control inputs 
are more penalised compared to the controller with Rl. As a consequence, this damped controller does not reach 
the third reference temperature which is far from steady state, see Figure 2a. On the contrary, the approximated 
controller is aggressive enough to achieve all reference values but does not lead to such an oscillating trajectory 
as the optimal controller associated with Rl. Note that the aggressivity of the approximated controller is variable. 
It depends on the distance of the reference value from the zero steady state. With every reference step change, 
the weighting matrix R is recomputed. The first and the fourth reference values were achieved with a relatively 
damped trajectory. On the other hand, the further the reference was set from the zero steady state, the more 
aggressive setup of the controller was used for interpolation. The aggressive behaviour can be seen in tracking 
the second and the third reference temperature.   
The control performance of all three controllers was evaluated and analysed by various criteria summarised in 
Table 1. Specifically, the following criteria were evaluated: the integral squared value of control error ISE, the 
volume of heating medium V consumed in control, and the corresponding energy E necessary to heat the 
heating medium used for control. 

Table 1: Control performance comparison 

R ISE [°C2 s] V [ml] E [kJ] 
Rl 931 1,742 36.2 
Ru 941 1,745 36.3 
Ra 886 1,735 36.0 
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When comparing the qualitative criterion ISE, applying the approximated control actions lead to the highest 
accuracy. Moreover, the approximated controller leads to a reduction in heating medium consumption. This is 
also linked with savings of the energy necessary to heat the heating medium. Note that the improvement factors 
in the evaluated criteria are not very significant as they were evaluated for 300 seconds of control simulation. 
After 1 hour of plant operation, the heating medium savings would reach 80 ml and 2 kJ of energy would be 
saved. Moreover, when considering large-scale industrial heat exchangers, the savings would be nonnegligible.  

5. Conclusions 
This work focuses on self-tunable explicit model predictive control of a heat exchanger. The tuning of 
approximated explicit MPC is based on linear interpolation between the optimal solutions evaluated by two 
explicit MPC controllers. The setup of the explicit controllers differs only in weight matrix R. In this paper, a novel 
idea of self-scaling of matrix R is presented. Based on the distance of the reference value from the steady state, 
the aggressiveness of the controller is recomputed when the reference value changes. The self-tuning of the 
approximated explicit controller was applied to a system of a laboratory heat exchanger. Tracking of multiple 
reference values was investigated and control performance was evaluated. As the controller's aggressivity 
modified with each step change of the reference, the control performance improved compared to the explicit 
controllers utilizing the same penalty matrix R during the whole control. The proposed method also decreased 
the volume of the heating medium and energy consumption associated with heating, which reflects the goals of 
a climate-neutral economy by 2050. After 1 hour of plant operation, the heating medium savings reach 80 ml 
and the associated energy savings are approximately 2 kJ. The future work will focus on two main challenges. 
First, the model of the considered heat exchanger is linear although the heat transfer process is nonlinear. 
Therefore, the proposed method will be practically implemented and explored on the laboratory heat exchanger. 
Secondly, the scaling of R matrix corresponding to MIMO systems will be further investigated, as it represents 
a more challenging task when tuning the controller’s aggressivity. 
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