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The paper presents and discusses the development and application of different odour monitoring models 

(OMMs) for the classification and quantification of odour emissions with Instrumental Odour Monitoring Systems 

(IOMSs). Feed-forward neural network and linear discriminant analysis were considered for the classification of 

different type of odours, while feed-forward neural network and partial least square were investigated for the 

odour quantification. The prediction accuracy of the models was examined by analyzing different data extracted 

from the sensors’ response curve (at rise, intermediate and peak period). The application has been carried out 

in a complex petroleum refinery plant. A total of 44 potential odour sources were monitored and grouped into 7 

different classes. 

Results highlight that the feed-forward neural network prevails in terms of high prediction capability having an 

architecture with three layers (input, hidden and output) of respectively 14-8-7 for odour classification, and of 

14-8-1 for odour quantification, at ≥0.982 R2. Meanwhile, the most useful data were found using the peak period. 

The research contributes to the understanding of IOMS applications, providing data on refinery plant odour 

emissions and applicable mathematical models to ensure great data reliability. The study highlights the influence 

of the pattern recognition algorithms in the Odour Montoring Model (OMM) elaboration and suggests the utility 

of promoting the implementation of flexible and adaptable IOMS.  

1. Introduction 

Odour has been listed among atmospheric pollutants (Piccardo et al., 2022), due to the fact that they can be an 

indicator of unhealthy air quality for the people and a source of private or public nuisance resulting in concerning 

environmental issue (Full et al., 2020). Among all the industries, petroleum industry is one of the contributors of 

odour pollution through the emission of different gaseous substances in the form of aromatic compounds, 

specially BTEX (benzene, C6H6; toluene, C7H8; ethylbenzene, C8H10; and xylene, C8H10), and sulphur (SOX) 

compounds. Moreover, the emission from these plants may generate off-site impacts, thus, requiring 

comprehensive management by reliable assessment (Spinazzè et al., 2022). 

At present, there are three (3) main strategies employed for odour emissions assessment such as the use of 

instrumental techniques, design of dispersion models, and citizens active involvement (Full et al., 2020). Firstly, 

the use of instrumental techniques can be categorized as analytical, sensorial, and combined analytical-

sensorial methods (Giuliani et al., 2012). Analytical techniques are usually detectors and gases analysers in the 

laboratory that provide information about specific gases concentration in the odorant mixture (Blanco-Rodríguez 

et al., 2018). This technique can reveal the responsible gaseous compounds in the odour emission; however, it 

is not possible to quantify odour as a single parameter. For sensorial methods, dynamic olfactometry (EN 13725) 

and field inspection (EN 16841) are the methods specifically developed for odour measurement, which have 

been standardized at the European level (Bokowa et al., 2021). For combined analytical-sensorial techniques, 

Instrumental Odour Monitoring Systems (IOMSs) are applied (Zarra et al., 2021a). IOMS can be coupled with 
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other instruments in the field and implemented using smart technologies (Zarra et al., 2019), thus making it 

suitable to deploy on-site, giving real-time measurements, but more studies are needed in order to improve its 

functionality. On the other hand, odour dispersion models are able to predict odour concentration values at 

ground level in the simulation space-time domain (Botta et al., 2020). Lastly, citizens active involvement in terms 

of mapping and managing odour pollution problems, represents a proactive strategy to address socio-economic 

conflicts within the impacted communities (Conti et al., 2020). This approach is not expensive but takes time 

and lacks scientific stability due to the psychological effects of the people engaged in monitoring the odours.  

In this study, the development and comparison of different odour monitoring models (OMMs) for the application 

of Instrumental Odour Monitoring System in a petroleum refinery plant is discussed. OMM can be parametric or 

non-parametric depending on the behaviour of the dataset (Zarra et al., 2021b), while data reduction is coupled 

in the data processing to support the OMM’s effectiveness. In this way, robust information from the sensor 

response can be achieved with less redundancy. The research aims to contribute to the understanding of the 

methods to improve the accuracy of odour classification monitoring model (OCMM) and odour quantification 

monitoring model (OQMM) using the IOMS, in complex odorous plants characterized by a significant number of 

potential sources of odour emissions.  

The investigations have been conducted in five phases: i) collecting samples at a real refinery plant and odour 

classes definition; ii) IOMS data acquisition and dynamic olfactometry analysis; iii) IOMS, extraction of the 

signals from the complete acquired response curve from the measurement sensors, in correspondence with the 

rise (first 1 minute), intermediate (mid 1 minute) and peak (last 1 minute) periods, and (b) IOMS, processing of 

the extracted data for the development of the odour monitoring models (OMMs) for OCMM and OQMM 

application; v) comparison studies. 

2. Material and methods 

2.1 Odour sampling 

Research studies were carried out by collecting real samples from a big refinery plant. A total of 135 gaseous 

samples from different points, were carried out over a period of one year. The collected samples were clustered 

into seven classes (S1 – S7) (Figure 1) based on their position and the compounds emitted, in order to identify 

the odour classes to be investigated. The “lung technique” was employed for the sampling by withdrawing the 

inlet odorous air using a vacuum pump into a 7-L Nalophan® bag. Moreover, odourless ambient air samples 

were also sampled to build the baseline reference.  

 

 
 

Figure 1: Investigated petroleum refinery plant, odour sources and classes 

 

2.2   IOMS Technology and Dynamic Olfactometry Analysis 

The IOMS presented in the study of Oliva et al. (2021) has been employed for the experiments. While TO8 

olfactometer, with 4 panel and “yes/no” method was applied in accordance with EN 13725, to determine the 

odour concentration of the collected air samples, at the Olfactometric Laboratory of the Sanitary Environmental 

Engineering Division of the University of Salerno. 
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(4) 

(5) 

2.3 Feed-Forward Neural Network  

Feed-Forward Neural Network (FFNN) was architected with three layers (input, hidden and output) under 

supervised learning by using back-propagating algorithm (e.g., Bayesian regularization) and tan-sigmoid 

function [ f(x) = (1+e-Σf)-1 ] to obtain the ideal network (Keller et al., 2017). The different electrical resistances 

values (x1 … xn) serve as inputs. 7 output classes (λ1 … λ7) (Figure 2a) were used for the development of the 

odour classification monitoring model (OCMM) and one (δ, OU m-3) (Figure 2b) as target output for the odour 

quantification monitoring model (OQMM). The ideal FFNN is based on the number of nodes in the hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Target FFNN’s typology for odour classification (a) and odour quantification (b) monitoring model 

2.4 Linear Discriminant Analysis  

Linear Discriminant Analysis (LDA) was used to reduce the number of features before classification. The 

consequent OCMM seeks a linear transformation that maximizes the separation of classes in a reduced 

dimensional space (Zarra et al., 2021a). During the calibration phase in the LDA method, the coefficients are 

calculated; in our case: k, a, b… α of the different discriminant function equations (γ) (Equation 1-3) defined for 

each representative group (i.e., λ, β and nth). To do this, the output values of the sensors are substituted for the 

variables (x1, x2 ... xn) 

γ λ = k 1 + ax 1 + bx 2 + … αx n 

γ β = k 2 + ax 1 + bx 2 + … αx n 

 γ nth = k 3 + ax 1 + bx 2 + … αx n 

2.5 Partial Least Square 

Meanwhile the partial least square method was used for the OQMM. PLS finds the best relationship 

between dependent variable (Y) and independent variables (Xm) for prediction by considering the ideal 

number of components. Moreover, during PLS training, cumulative (CUM) R2 and Q2 are considered. Q2 

is another R2 when the model applied to a test set, meaning adding more variables can increase the R2, but 

might not make Q2 increase (Wang et al., 2019). Considering these components, the PLS model can be 

expressed in the form of multiple linear regression model (Equation 4): 

𝑌 =  𝛽0 + 𝛽1𝑋 1 + 𝛽2𝑋2+ . . . + 𝛽𝑛𝑋𝑛 

where: 

− 𝛽𝑖 , 𝑖 = 14 are the coefficient of the predictive variables (Xn). 

2.6 Data Reduction 

IOMS registered signals given in kΩ (Equation 5): 

RS = (R – RO) / RO 

where: 

− R = resistance value after the reaction with a gaseous compound; 

− Ro = default resistance value of the sensor (baseline resistance).  

The relationship between resistance and the gas concentration is inversely proportional (Equation 6): 

(a) (b) 

(1) 

 

(2) 

 

(3) 
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 R (kΩ) = A(C)–α  

where:  

− R = electrical resistance supplied by the sensor;  

− A = constant defined by the material;  

− C = concentration of analyzed gas;  

− α = slope (for instance the experimental quantity of the gas).  

Since the acquisition time is 2 minutes, 3 extracted data are taken into account: rise (first 1 min), intermediate 

(mid 1 min) and peak (last 1 min). 

2.7 Statistical analysis and comparison study 

Microsoft Excel, Statistica StatSoft 10 and MATLAB R2021a were used as statistical software. While 

classification accuracy rates (CAR, %), coefficient of determination (R2) and root-mean square errors (RMSE) 

served as criteria for the accuracy tests. Comparison study was based on which of the models provided the best 

criteria.  

3. Results 

3.1 Odour emissions characterization in terms of odour concentration 

Figure 3 highlights the box-whisker diagram of all the determined odour concentrations for the overall monitored 

period. As shown, the minimum value was found to be 50 OUE m-3, while the maximum value of 1800 OUE m-3, 

covering a confined variability of values. The average measured odour concentration is 366 OUE m-3 and the 

standard deviation is 270 OUE m-3. Furthermore, it has been found that most of the measured data belong to 

the 3-4th quartile, characterized by an odour concentration included between 500 – 800 OUE m-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Odour concentration characterization and distribution for the collected samples 

3.2 OCMMs analysis  

During LDA calibration, a tolerance level of 0.001 and step wise analysis were employed. The obtained 

calibration (C), validation (V) values were respectively: i) for the whole curve: C,76.96%; V, 70.35%; Wilk's 

Lambda, Λ = 0.028084; ii) for the rise: C, 74.54%; V, 60.90%; Wilk's Lambda, Λ = 0.0304486; iii) for the 

intermediate: C, 77.60%; V, 64.87%; Wilk's Lambda, Λ = 0.0261409; iv) for the peak period: C, 78.54%; V, 

73.62%; Wilk's Lambda, Λ = 0.0241204.  

During the calibration phase, the Wilk’s Lambda which signify the LDA’s discriminatory power, was found to be 

highest for the data in the peak period at Λ = 0.0241204, and a 78.54% accuracy rate, while the rise period has 

the poorest due to the uncertainty in the dataset at this point (i.e., Λ = 0.0304486, % = 74.54%).   
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Meanwhile, after the validation stage, the peak period still shows the best accuracy rates of 73.62%, promoting 

the most stable points in this interval.   

Meanwhile, in the FFNN environment, during the training, the higher the number of nodes assigned to the hidden 

layer, the more chances for the network to over-fit, while few numbers of nodes may lead to an under-fit network 

(Licen et al., 2018; Zarra et al., 2019). In the investigated analysis, training the network under Bayesian 

regularization, the optimum FFNN typology was found as 14-8-7. After extracting FFNN 14-8-7, the validation 

dataset was fed to the trained network to assess its generalizing capability.  

The obtained training (T), validation (V) values were respectively: i) for the whole curve: T, 0.8784; V, 84.43%; 

ii) for the rise: T, 0.9067%; V, 99.14%; iii) for the intermediate: T, 0.9327; V, 99.29%; iv) for the peak period: T, 

0.9608%; V, 99.71%. Consequently, the results show that the peak period contains the most useful data for 

FFNN as OCMM such as 0.9608 R2 (training) and 99.71% (validation). 

3.3 OQMMS analysis 

PLS results show that by evaluating all the piecemeal signal values, all reduced data points were in good 

agreement with the 7 components, thus considering the ideal number of components for PLS OQMM. Moreover, 

during the calibration of PLS, the R2 (CUM) (0.973) and Q2 (CUM) (0.722) show only a negligible change, 

therefore it only highlights that data reduction presumably it does not have a significant impact for the calibration. 

However, the PLS models were verified to ensure their individual reliability, thus, revealing the ideal PLS OQMM 

entails the best data in the peak period on the basis of 0.9399 R2 and 136.65 OU m-3 during validation. 

In the case of FFNN, the experiment was carried out by manually assigning a specific number of nodes in the 

hidden layer from 5 – 22. After a complete run, it has been found that the FFNN typology is 14-8-1. A strong 

correlation (R ≥ 0.987), coefficient of determinations (R2 ≥ 0.974) and root-mean squared errors (RMSE ≥ 22.25 

OU m-3) were obtained during FFNN training and validation, expressing the reliability of FFNN as OQMM. In 

fact, this phenomenon shows that FFNN can build a strong relationship based on the available data resources, 

but only varies on the training time (Herrero et al., 2016; Pomponi et al., 2021). The higher the number of nodes 

in the hidden layer, the more complex the network, thus longer training time is required.  

3.4 Comparison Study 

During the training/calibration phase, both LDA and PLS demonstrated simplicity in the execution and 

calibration. Their mechanisms are based on linear patterns and assumptions (e.g., parametric). In LDA, it has 

been found the linear features and combines them before classification, while PLS initially calculate the principal 

components and make a regression model with respect to the response variable. Meanwhile, FFNN is complex 

due to the numerous configurations considered, and must be done manually and carefully. It can establish a 

strong pattern independent of linearity, thus providing more accurate measurements, but the main drawback to 

researchers is visualizing the variable interactions. 

Furthermore, during the validation of the QCMMs and OQMMs, the ANN revealed the highest classification 

rates (%) and coefficient of determinations (R2), respectively. The accuracy of FFNN application is at least 80%. 

Finally, the comparison analysis highlights that the best combination should be the peak data and ANN as 

pattern-recognition algorithm for both OCMM and OQMM. 

4. Conclusions 

In the study, the data processing system of an advanced Instrumental Odour Monitoring System (IOMS), was 

studied and implemented with reference to odour emissions from a complex refinery plant, characterized of a 

high number of potential different odour sources. 

Different processing approaches were used such as FFNN as non-parametric technique, and PLS and LDA as 

parametric techniques. Moreover, 7 classes were identified for the OCMM (odour classification), while odour 

concentration serves as target output for OQMM (odour quantification). 

Results show that for the investigated study, FFNN emerged as the ideal OCMM and OQMM using the 

piecemeal data in the peak period. However, it should be emphasized that the development of FFNN is laborious 

and time-consuming and has limitations on exploiting variables’ interaction. On the other hand, PLS and LDA, 

show fast execution, are less complex, and consist of features that reveal and independent and dependent 

variable interaction. But, PLS and LDA have a bounded prediction capability, being dependent to linearity. This 

issue could only be overcome when supplying more samples in the dataset, unlike ANN, it could adopt a strong 

pattern based on the available data resources. Furthermore, FFNN OCMM and OQMM typology was found to 

be 14-8-7 and 14-8-1, respectively. For PLS, 7 components are ideal, and 7 discriminant functions for LDA.  
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