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The competitive adsorption of water over Volatile Organic Compound (VOC) in Metal Oxide Sensor (MOS) is 
well known in literature and is one of the main disturbing factors that contributes to worsen electronic nose (e-
nose) performance in classifying and quantifying odours. This constitutes one of the most important limitations 
for the large-scale diffusion of e-noses since it hinders their use for several applications. In this paper, we 
investigate the possibility to implement the Orthogonal Signal Correction (OSC) method for compensating the 
relative humidity effect on MOS sensors. Two different e-noses have been used for this study, each one 
equipped with a different sensor array comprising only MOS sensors. In order to investigate the relative 
humidity (RH) effect on the sensors response for different compounds, four calibrants (acetone, butanol 
dimethyl-disulphide and toluene) have been analyzed at differente levels of RH (20%, 50% and 80%, for a 
fixed temperature of 20°C) for training the instruments to compensate its intereference. The concentration of 
the sample analyzed has been set equal to 2.5 ppm. The results achieved proved that the OSC 
implementation can be a suitable method for the mitigation of the RH interference on MOS sensors, since its 
application significantly improved the performances of classification, increasing the global accuracy above 
70% for both e-noses considered in this study. 

1. Introduction  
Gas sensing system have proven the capability to recognize and discriminate different gases and odours, an 
ability that is gaining much interest because of its possible wide range of uses and application. They are 
currently being used for several purposes, ranging from ambient air monitoring, food quality control, medical 
diagnosis, process control, etc... (Capelli, Sironi, and Rosso 2014; Loutfi et al. 2015; Collins and Moy 1995). 
However, their functioning is influenced by various ambient parameters which act as disturbing factors, 
worsening the system performances. Among them, humidity has a major impact since water molecules absorb 
on the MOS sensors in a competitive way compared to the target gas to be analyzed (Nenova and Dimchev 
2013). To enhance the measurement accuracy, compensating the relative humidity (RH) impact on gas 
sensors is of prime importance. To face this problem, there are two possible approaches, involving either 
hardware or software modifications. In the first case, the sampling system can be modified introducing a 
section for the selective removal and/or control of the humidity in the gas stream to be sampled. Even though 
several options are available for this purpose, a general drawback of such hardware solutions is that they 
generally increase the instrument complexity, thus resulting in an increase of the final costs both for purchase 
and maintenance of the e-nose. On the other hand, considering a software modification, it is possible to 
introduce a signal correction on the data acquired by the instrument that compensates the raw sensor 
responses based on the relative humidity content of the gas stream. In this case, no hardware modifications of 
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the system are required, but it is necessary to develop an appropriate model for training the instrument for 
such purpose. Indeed, this solution allows to reduce the complexity of the sampling system of the e-nose, thus 
minimizing its final dimensions and costs. In this paper, we investigate the possibility of implementing the 
Orthogonal Signal Correction (OSC) (Wold et al. 1998) method for compensating the RH interference on two 
different e-noses, each equipped with a different MOS sensor array. To appositely train the system to 
recognize how the different RH levels influence the sensors signal responses, four calibrants have been 
selected for the analysis: acetone, butanol dimethyl-disulphide and toluene. The concentration used for the 
tests has been set equal to 2.5 ppm to ensure a good response of the sensor array to the target gases despite 
the RH masking effect. Three different levels of humidity have been considered for training the compensation 
model: 20%, 50% and 80%, both evaluated at a temperature of 20°C. These levels have been chosen to 
almost cover all the spectrum of the RH for a fixed temperature, except for the extreme conditions of severe 
dry and wet environments that are rarely encountered in real scenarios. Once the models have been 
developed and tuned with an internal validation, an external validation has been carried out for evaluating the 
performance of the systems in an independent way. 

2. Material and methods 
2.1 Electronic noses 

The e-noses used in this project are two “EOS507c” commercialized by Sacmi s.c, named EOS02 and 
EOS03. The use of two different instruments to conduct the test is related to the purpose of increasing results 
robustness and thus the validity of the method proposed. These instruments mount two different sensors 
arrays: the EOS02 is equipped with 4 commercial sensors produced by Figaro (i.e. TGS 2600, 2602, 2603, 
2444) and two non-commercial tin-oxide-based MOS sensors produced by Sacmi, while the EOS03 
comprises 1 Figaro sensor (TGS 2610) and 5 non-commercial MOS produced by Sacmi made of tungsten and 
zinc oxide. The sampling system of the “EOS507c” operates mixing the incoming gas sample to be analysed 
with reference air in a ratio 1:1, obtaining a total flux of 50 cm3/s. This reference air is generated through a 
filtration of the ambient air on activated carbon, to remove any traces of odorous compounds. Those 
instruments are already equipped with a cutting-edge system for RH control: the system allows to tailor the 
incoming gas stream dew point before entering the sensor chamber. Despite being very useful for outdoor 
odour monitoring, this system makes the instrument extremely complex and delicate. Indeed, most of the 
times that environmental analyses are interrupted, the problem is related to a malfunctioning of the humidity 
regulation system. For this reason, we decided to study alternative software control systems, and thus 
bypassed the RH control system present on the e-noses for our tests.  

2.2 Sample preparation and analysis 

The calibrant used for the tests have been prepared with a concentration of 5 ppm, but since the e-noses used 
are equipped with a dilution system that mixes the sample with filtered air in a ratio 1:1, the final concentration 
that reached the sensor chamber was equal to 2.5 ppm. The samples preparation has been made using the 
method reported by Sartore et al. (2022) consisting in a syringe-pump injecting a certain amount of liquid 
calibrant in a stream of filtered air to obtain the desired gas concentration that is then used to fill a Nalophan 
bag. Once the sample was prepared, the second phase consisted in tailoring its RH. For this purpose, a 
climatic chamber was used. Because of the Nalophan permeability to humidity, by leaving the samples at a 
fixed temperature of 20°C and at the desired level of RH inside the climatic chamber, they reach the external 
RH after ca. 2 hours. The e-nose analysis lasted a total of 40 minutes, comprising 20 minutes of “during”, in 
which the gas sample is sent to the sensors chamber, and other 20 minutes of “after”, when reference air is 
sucked for cleaning the sensors and restore its response to the original value. Globally 24 samples have been 
prepared for training the instruments, 6 for each calibrant, and 2 for each RH level considered. For the 
validation set 12 samples have been used, 3 for each calibrant, and one for each RH level. 

2.3 Data Processing 

The data processing pathway used in this study is reported in Figure 1 and will be described more in detail in 
the next paragraphs.  
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Figure 1. Data processing pathway used for the raw signal elaboration. 

2.3.1 Pretreatment  
Once the data are collected from the e-noses they are first pretreated, to compensate for differences in the 
magnitudes of the signals. In this study we have considered 4 different scenarios as reported in Table 1  

Table 1. The four different scenarios considered for the initial pretreatment of the raw data. 

Method Equation 
No pretreatment - 
Normalization 1 𝑦𝑦𝑖𝑖 = (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚) (𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚)�  
Normalization 2 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚⁄  
Standard Normal Variate (SNV) 𝑦𝑦𝑖𝑖 = (𝑥𝑥𝑖𝑖 − �̅�𝑥) 𝜎𝜎⁄  

 
Here x represents the raw sensor signal and y represent the new sensor value after pretreatment. The two 
normalization techniques set the sensor values in a range comprised between 0 and 1 for “Normalization 1”, 
and between -1 and 1 for “Normalization 2”, whereas the SNV sets the mean and the variance value of the 
new curves to 0 and 1, respectively. Each of these techniques has been applied on each sensor individually. 

2.3.2 OSC 
The OSC algorithm has been applied following the method proposed by Tom Fearn (Fearn 2000; Bax et al. 
2021). In this study, two different scenarios have been investigated, one consisting in the application of the 
OSC on each MOS sensor individually, to develop a specific compensation model for each sensor. The other 
one foresees the union of the different sensors signals in one single curve, by attaching one to the other the 
resistance value registered during the analysis as suggested by Padilla et al. (2010), on which the OSC is 
then applied. This way, the compensation model developed is “generalized” and applied simultaneously to all 
the sensors. One degree of freedom of the OSC is the number of orthogonal components to be removed from 
the system, for which it is necessary to find an optimum. To identify this optimum the classification 
performances, obtained by the subsequent application of the PCA and RF/SVM, for the different orthogonal 
components have been compared, and the best scenario with the maximum classification accuracy has been 
chosen as the optimal model.  

2.3.3 Principal Component Analysis (PCA) 
PCA was applied for reducing the dataset dimensionality to an acceptable number of principal components 
(PC) for the subsequent classification task. In the scenario in which the OSC was not applied, before the PCA 
implementation, the different sensor’s curves after pretreatment have been merged in one single curve, in the 
same way as it has been done with the OSC.  

2.3.4 Classification  
After dimensionality reduction, the first 4 PC scores obtained from the PCA are passed to two different 
machine learning algorithms: Random Forest (RF) (Breiman 2001) and Support Vector Machine (SVM) (Sun 
2014). The choice of considering only the first 4 PC has been decided by looking at the variance explained, 
which resulted always >80%. The use of two different algorithms was done for the purpose of comparing of 
the impact of the OSC implementation on two different machine learning techniques. For tuning the internal 
parameters required by the two algorithms, a 5-fold Cross validation was applied on the training data. 

2.3.5 External Validation 
Finally, for testing the classification performances in an independent way, an external validation test was 
performed. The data belonging to this test underwent the same preteatment previously illustrated; they have 
been processed using the models already developed on the training data. 
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3. Results 
3.1 Relative humidity interference 

To verify the effect of the RH interference on MOS, some of the resistances registered by the sensors during 
the analysis have been plotted. Depending on the RH level of the sample, the plateau of the curves shifts, 
proving that the water present in the gas significantly affects the sensors response.  

3.2 OSC correction 

3.2.1 OSC optimization 
Due to space limitations, as an example, here only the optimization procedure carried out on the EOS02 using 
the RF is illustrated, with the purpose to provide the logic behind the choices made. The same procedure has 
been applied for the SVM and for the EOS03 data, resulting in the same conclusion that will be reported in this 
section. After data pretreatment, the OSC implementation followed. As stated in paragraph 2.3.2, for this 
technique it is necessary to select an optimal number of Orthogonal Components (OC) to be removed from 
the original dataset. For this purpose, a comparison between the classification performances, on both the train 
and the test set were carried out by varying the number of orthogonal components removed. Figure 2 and 
Figure 3 report the accuracies obtained for both the cases where the OSC has been implemented on the 
single sensors and on the “merged” sensors curves. For both scenarios considered there is a maximum of 
classification performances on the train set by removing 1 OC. By increasing the number of components 
removed the classification accuracy worsens, meaning that too much information’s are being removed from 
the original data.  
 

   
Figure 2. OSC classification performances for its application on every sensor individually obtained with the RF 
algorithm, as function of the Orthogonal Components (OC) removed from the original data. 
 

   
Figure 3. OSC classification performances for its application on the merged sensor curves obtained with the 
RF algorithm, as function of the Orthogonal Components (OC) removed from the original data. 
 
By looking at the validation test performances a difference among the two approaches emerges. The OSC 
applied on the single sensors it is not able to transfer the train performances on the test set, since here the 
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accuracy randomly fluctuates around 50%. Conversely, if the OSC is applied on the “merged” sensors curves, 
the test set follows the same trend obtained on the train, with a peak of the performances after the removal of 
1 OC. This is a clear sign that among the two options the only suitable is the application of the OSC on all the 
sensors merged in a single curve. For this reason, in the subsequent section only the results obtained with this 
scenario will be presented. Based on these evaluations, the optimal number of OC to be removed resulted to 
be 1. Similar results have been obtained by implementing the SVM, and they have been confirmed also on the 
EOS03 data. The next paragraph only show the results obtained by removing 1 OC. 

3.2.2 Results 
The performances obtained with the EOS02 before and after the OSC implementation, considering the 
removal of only 1 OC, for both RF and SVM are reported in Figure 4 and Figure 5, whereas the performances 
obtained with the EOS03 before and after the OSC implementation, considering the removal of only 1 
orthogonal component are reported in Figure 7 and Figure 8. 
 

 
Figure 4. Performances obtained with the RF algorithm before and after the OSC implementation on EOS02. 
 

 
Figure 5. Performances obtained with the SVM algorithm before and after the OSC implementation on EOS02. 
 

 
Figure 6. Performances obtained with the RF algorithm before and after the OSC implementation on EOS03. 

 

 
Figure 7. Performances obtained with the RF algorithm before and after the OSC implementation on EOS03. 
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3.2.3 Discussion 
The results obtained proved that the implementation of the OSC increases the classification performances on 
both the train and test data for almost all the scenarios considered and for both the e-noses involved in the 
study, resulting in a suitable method for the mitigation of the RH interference on the MOS sensors. In 
particular, the most significant increase is obtained in the case where no preteatments are applied on the raw 
sensor curves. In fact, in this case the train performances remain almost unchanged, but in the test set there 
is an average increase of the accuracy of almost 70%, passing from 20% accuracy without the OSC 
implementation to a 90-100% after its application. This means that without the correction, the classification 
model performances are not able to be replicated on new independent samples because of the RH 
interference, while after the OSC application on the new data this effect is compensated and the samples are 
correctly classified. In the other cases, where the normalizations and SNV are applied without the OSC 
implementation, there is a general increase in the performances obtained, meaning that also these techniques 
can somehow mitigate the RH effect in the first place. Still, if the OSC is then applied on the pretreated data, 
the global performance slightly increases, meaning that the RH compensation could be even pushed further 
and optimized. Finally, it is important to highlight that very similar results have been obtained on both the e-
noses involved in this study, confirming the goodness of the OSC in compensating the RH interference on the 
MOS sensors. 

4. Conclusions 
In this preliminary study, the implementation of the OSC for compensating the RH interference has been 
tested on two different e-noses equipped with two different MOS sensors arrays. The tests involved the use of 
4 different calibrants, analysed at a fixed concentration of 2.5 ppm and at three different levels of RH, i.e. 20%, 
50% and 80%. The OSC implementation provided a general increase of the classification performances for 
both the e-noses. In particular, in the case where no pretreatments are applied on the raw signals, the 
performances obtained on the test set increase from a 20% of accuracy obtained without the OSC application 
to an average of 90% after the OSC implementation. This proved the potentiality of this technique in the 
mitigation of the RH competitive adsorption on the MOS sensors, despite the limited number of samples 
considered in this preliminary study. Further studies should in the first place involve a larger number of 
samples with the purpose of confirming the goodness of this method, and secondly try to transfer this 
correction technique from a laboratory application to real environmental scenarios.  
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