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The paper presents validation of innovative adaptation of modified plug flow (MPF) model to recognition of 

thermal behaviour of industrial system of low emission gas fuel burners operated in radiant chamber of vertical 

cylindrical fired heater placed in crude oil atmospheric distillation plant. The MPF model originally developed 

for calculation and identification of real distribution of heat flux along height (length) of combustion chamber 

burner testing facility of Institute of Process Engineering at Brno University of Technology is adapted and 

applied to situation of vertical cylindrical radiant chamber of fired heater in order to recognise a real thermal 

behaviour of actually operated low emission burner system and its influence on hardly operated fired heater 

characterized by high fouling rate of heated crude oil inside radiant tubes accompanied by significant 

deformations of radiant tubes. Results of adapted MPF model are confronted with results of fired heater heat 

flux operational measurements and with comparative results of CFD simulations and bears important 

observations concerning influence of thermal behaviour of installed burners system on fired heater operation. 

1. Introduction to industrial problem 

Fired heaters are the major energy consumption components of refinery processes. From this reason a high-

performance fired heaters of radiation-convection type, containing radiant and convection section, are 

preferred especially for fundamental refinery applications. Radiant section (or radiant chamber) of such fired 

heater is dominant part of heater since the most of heat is transferred to heated fluid there. Fired heater´s 

design and operating is under continuous development, because their optimum design leads to higher 

efficiency, lower operating cost, lower energy consumption, and consequently lower amount of emissions 

being produced. However, energy saving design and operation of fired heater together with its operating 

reliability and required lifetime can be achieved only by proper application of integration techniques 

considering not only systematic approach for proper placement and conceptual design of such equipment but 

also its reliable detail design based on accurate thermal-hydraulic calculations (Lam et al., 2014). 

Moreover, design of fired heaters for refinery processes has to be performed in accordance of relevant design 

standards. The American Petroleum Institute Standard 560 (API, 2007) is a dominant and worldwide 

recognized fired heater design standard. However, contrary to regular updates of this standard, the principle of 

calculation of important operating parameters of the fired heater radiant section remains the same, based on 

average heat flux to the radiant tubes. 

Although the average radiant section heat-flux rate is an important indicator of overall heater performance, it is 

not a good indicator of localized heater performance, because real heat flux varies in radiant section 

significantly from average value. Generally, the level of agreement of applied design standard rules, especially 

of typical local distribution of heat flux along the radiant section height (considering radiant chamber with the 

most widespread vertical up fired burner system) and real thermal behaviour of installed burners in radiant 

chamber fundamentally influences operating behaviours of whole fired heater. If the level of agreement is not 

good enough, a serious operating troubles of fired heated occurs. Typically it is a separation of vapour and 
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liquid phase of heated fluid and rapid deposition of coke inside tube coil resulting in overheating of tubes, rapid 

decline lifetime of exposed tubes (frequently accompanied by their visible deformations), fast increasing of 

fluid pressure drop, and necessity of the plant shut down and decoking of fired heater (Jegla, 2013). 

For purpose of close keep in touch with reality, actually operated fired heater with mentioned operating 

problems is taken as example to demonstration of practical usefulness of below presented approach. 

Considered fired heater is a typical vertical cylindrical fired heater (see Figure 1), containing standard radiant 

and convective section, commonly and long-time operated in crude oil atmospheric distillation unit (from which 

complete geometry and plant operating data are available). Radiant section of the heater and its tube system 

has been designed in accordance with the relevant abovementioned API Standard. Tubular system of radiant 

section represents two-passed tube coil created totally by 60 tubes (placed in one row around circular lining 

wall) with the constant tube outer diameter (do) 194 mm and with tube spacing (s) 350 mm. Each tube is 

approx. 17 m length. Tubular system is placed on tube coil circle diameter (DC) of approx. 6.7 m. So the shape 

of radiant section is characterized by ratio of tubular system height (or length L) to tube circle diameter which 

is L/DC = 17/6.7 = 2.5 (see Figure 2). Radiant section is equipped by two levels of observation doors for 

viewing all radiant tubes and all burner flames for proper operation and light off. These observation doors are 

located at the level of 5.0 m and 10.0 m above bottom of radiant section (see Figure 1). Each level contains 12 

observations doors placed uniformly circumferentially radiant section.  

Abovementioned operating problems of fired heater started four year ago, after approximately one year of 

fired heater operation with new low emission burner system (which replaced originally installed classic gas-

fueled vertically up fired six burner system due to the need of compliance with emission limits). New burner 

system contains a total of six staged-gas burners vertically oriented and mounted on bottom of radiant section 

(see Figure 2), equipped with guide-vane stabilizers (swirlers), each of nominal firing duty 4 MW. So the 

(unchanged) nominal firing capacity (heat released) of fired heater is 24 MW. Unchanged fired heater flue gas 

waste heat air preheat system produce combustion air preheated to 170 °C and supply preheated combustion 

air to new burners by unchanged air duct distributing system. Results of standard rating thermal-hydraulic 

simulation of fired heater with low emission burner system for nominal operating conditions performed 

accompanying installation stage of low emission burner system informs that thermal efficiency of fired heater 

is 90 %, average heat flux of radiant tubes approaches 30 kW/m2 and outlet flue gas temperature from radiant 

section (i.e. bridge wall temperature) is close to 700 °C. 
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Figure 1: Sketch of fired heater situation with observation 

doors levels. 

Figure 2: Visualisation of tubular and burner 

system in radiant chamber. 

D
C

 

L 

668



2. Operational measurement and numerical analysis of local heat flux inside radiant section 

Since standard process measurement of fired heater at nominal operating conditions agrees very well with 

results of rating calculation and not indicate any potential problem (for example average measured value of 

bridge wall temperature is close to 700 °C) the only explanation of surprising operating troubles of fired heater 

(visible high deformations of several radiant tubes and unacceptable increasing of heated fluid pressure drop 

inside radiant tubes due to fluid coking process) is an unexpected heat flux distribution from flue gas to tubes 

inside radiant chamber. 

To verify this hypothesis (since the thermal behaviour of installed low emission burners was not available) it 

was decided to perform the independent two half days measurements of local heat flux inside radiant section 

(during carefully operated nominal conditions of fired heater by operator) and subsequently completed results 

of measurement by detail numerical computations of heat transfer inside radiant section of fired heater with 

using computational fluid dynamics (CFD) model employing commercial system ANSYS FLUENT. 

Since the another important aim of refinery operator is to install this type of low emission burners to next 

refinery fired heaters in the near future, the final task of mentioned measurement and CFD works was to 

identify the real thermal behavior of this type of low emission burner in suitable and quantifiable form allowing 

its easy implementation to standard rating thermal fired heater calculations to identify potential real behavior of 

next fired heaters employing this type of burner in future. 

Operational measurements – generally, measurement on fired heater during its operation usually allows 

identifying the real local heat flux only at certain locations of radiation section. So, it does not provide an 

overall picture of the distribution of heat flux along the section height (length). Moreover, such operating 

measurement requires special and expensive measuring equipment (most often thermography or heat flux 

meters) with trained operating staff (Jegla, 2013). In the presented fired heater case, observation doors of 

radiant section were used as suitable places and positions to measurement of true local heat flux. Commercial 

heat flux meter with trained staff was employed to perform a scheduled independent two half days 

measurements of local heat flux inside radiant section. Obtained results of measurement were statistically 

evaluated and profiles of local maxims, minims and average values of local heat fluxes located at the level of 

5.0 m and 10.0 m above bottom of radiant section (each completing measurements results from 12 

observation doors circumferentially radiant section) were obtained. Mean values of local heat flux provided by 

these operating measurements are presented for both measured radiant section levels in Figure 3. 

Computational analysis of heat transfer – combustion conditions of burners, setting of CFD model and results 

of detail numerical computations of heat transfer inside radiant chamber of the fired heater were already 

published and discussed by Jegla et al. (2015b). Numerical results of vertical mean heat flux profile in radiant 

section of actually operated fired heater are presented in graphical form in Figure 4. 

  

Figure 3: Measured local mean heat flux profiles Figure 4: CFD results of mean heat flux profile 
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3. Modified plug flow model and its adaptation to fired heater radiant chamber 

Modified plug flow (MPF) model was developed for identification of burner real thermal behaviour and to avoid 

thermal design problems related to current design methods based on the use of average heat flux, which does 

not provide sufficient information needed for exact design of inbuilt tubular heat transfer systems, especially 

when two-phase (i.e. vapour-liquid) flow of heated medium inside tubes occurs. The MPF model was first 

formulated by Jegla (2013) for a given specific burners´ testing combustion chamber of the Institute of Process 

Engineering (IPE) of the Faculty of Mechanical Engineering (FME), Brno University of Technology (BUT). 

Good predicative ability of MPF model was confirmed by Jegla et al. (2015a) by comparative calculations of 

22 different combustion cases of testing burners with various combustion conditions. Results of this validation 

clearly shown, that the MPF model is capable to provide the real heat flux distribution profile along the 

combustion chamber height (length) and to identify the corresponding profile of fuel burnt profile 

unambiguously representing thermal behaviour of a given burner at specific combustion conditions. 

The general principle of the MPF model is schematically presented in Figure 5, on the example of horizontally 

oriented cylindrical radiant chamber of length L divided into n number of small length segments. Local heat 

flux from the hot gases to the heat sink of i-th segment (qi, [W/m2]) is calculated from the heat (Qi, [W]) 

absorbed by the segment heat transfer area (Ai, [m2]) as a function of the local volumetric heat release rate 

(i.e. fuel burnt vol. fraction) which sum for whole chamber has to be equal to one. Worth noting that adaptation 

of MPF model to fired heater radiant chamber (its general calculation flowchart is in Figure 6) is iterative 

method employing so called modified mean gas temperature (TgM) in the first segment (for details see Jegla, 

2013) evaluated from mean gas temperature (Tg) in the first segment and the correction factor (CTg) calculated 

as ratio of heat absorbed by heat transfer area in the first segment (Q1w) and the total heat absorbed by heat 

transfer area of all segments of radiant chamber (QTw). 
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Figure 5: Sketch of general principle of MPF model Figure 6: Flowchart of adapted MEF model 
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4. Application of MPF model to fired heater radiant chamber with low emission burners 

It is obvious from Figure 6 that the MPF model predicts actual thermal behaviour of burner system 

(represented by fuel burnout profile) by best matching entered measured values of local heat fluxes of 

individual calculation segments with calculated ones. The accuracy of the predictions of MPF model so is 

influenced by two factors (i) availability of reliable measured data of local heat fluxes along radiant chamber 

and (ii) using an optimal number of computational segments. 

In the case of adaptation MPF model for radiation chamber of fired heater the requirement of availability of 

reliable measured data of local heat fluxes along radiant chamber is overcame by using results of operational 

measurements from two level positions of observation doors (Figure 3) together with CFD results (Figure 4) 

for covering all radiant chamber height by known average heat flux variation of operating burner system. And 

determination of optimum number of computational segments for MPF model follows. 

4.1 Sensitivity analysis for determination of optimum number of computational segments 
A sensitivity analysis of influence of number of computational segments on resulting value of heat flux in 

individual segments was performed with supporting of reliable measured heat flux values obtained during 

abovementioned validation of MPF model on burners´ testing combustion chamber of the IPE. We considered 

part of testing chamber length where flue gas temperature decreases from 1,200 K (inlet temperature) to 

800 K (outlet temperature) with known properties of flue gas and surface temperature of water-cooled wall of 

testing chamber. The number of virtual computational segments replacing this real length segment was 

subsequently changed (from 1 to 10) by changing of flue gas temperature range in calculation segment (for 

example for one computational segment replacing real length segment the temperature range is 400 K, for two 

computational segments replacing real length segment the temperature range is 200 K, etc.). Then from the 

local heat flux results of these virtual segments it was calculated average mean heat flux value of whole real 

water-cooled segment. Results of this sensitivity analysis are presented in Table 1. 

Table 1: Main results of sensitivity analysis for determination of optimum number of computational segments 

Number of computational segments [-] 1 2 4 8 10 

Flue gas temperature range of each 

computational segment [K] 

400 200 100 50 40 

Average heat flux of real segment [kW/m2] 13.99 14.87 15.05 15.11 15.11 

It is obvious from Table 1 that exist certain optimum number of computational segments of MPF model 

allowing to obtain required accuracy of the average heat flux of given real length segment of chamber without 

necessity of further increasing of computational segments number. It can be seen from Table 1 that this 

optimum number of computational segments is characterized by achieving a flue gas temperature range in 

each computational segment below 100 K. Transferring this knowledge to the length dimensional form it is 

found that for so far MPF model experienced testing cylindrical chambers with height (length) to diameter ratio 

(L/D) in range from 2 to 4 the optimum length of each computational segment should be less than 15 % of 

chamber height (i.e. Lcomp. segment < 0.15L). Adapting this knowledge to geometry of the solved radiant chamber 

of fired heater (L/DC =2.5; L=17 m) it is found that in this case the optimum length of each computational 

segment should be less than 2.55 m. From confrontation of this result with above presented results of 

operational measurements (Figure 3) and CFD simulation (Figure 4) for purpose of best mutual comparison of 

all values it was decided to apply 8 computational segments of MPF model each with length of 2.125 m. 

4.2 Main results of MPF model and its confrontation with other available data  

The main results of MPF model adapted with above found optimum number of 8 computational segments to 

radiant chamber of fired heater are presented in Figure 7. In this figure are for comparison purpose presented 

also mean average values of operational heat flux measurements for two levels of observation doors. With 

using of Figure 3 a mean average heat flux 52.42 kW/m2 is evaluated from average measured values at level 

of 5.0 m above bottom of radiant section and a mean average heat flux 26.81 kW/m2 is evaluated from 

average measured values at level of 10.0 m above bottom of radiant section. Moreover, Figure 7 contains for 

mutual comparison purpose also mean average heat flux profile from CFD simulation presenting data from 

Figure 4 in directly comparative recalculated representation of average heat flux of 8 length segments. 

Then, from Figure 7 allowing direct comparison of results of adapted MPF models with local average heat 

fluxes in two discrete levels of radiant chamber length and with comparable results of CFD computations it is 

clearly evident very good agreement between results of these all three sources (i.e. measurement, CFD, MPF 

model). It can be concluded that results in Figure 7 confirm that presented adaptation of MPF model to real 

radiant chamber of fired heater is capable with sufficient accuracy gives a true picture of operated low 

emission burner system in simple quantifiable form suitable for next practical utilization by thermal engineers. 
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Figure 7: Comparison of results of adapted MPF model with measured valued and results of CFD simulation 

5. Conclusions 

Innovative adaptation of MPF model (originally developed for identification of thermal behaviour of burners 

tested in university burner testing facility) is presented together with its successfully validation through 

successful recognition of real thermal behaviour of industrial system of low emission gas fuel burner system 

operated in vertical cylindrical fired heater of crude oil atmospheric distillation plant. Highly appreciated is a 

very good agreement of MPF model results with results of demanding local heat flux measurement of 

operated fired heater and with results of time consuming CFD modelling. The important contribution of the 

work consists in the confirmation that the adapted MPF model is able to rapidly identify the real thermal 

behavior of this industrial type of low emission burner in suitable and quantifiable form allowing its easy 

implementation to standard rating thermal fired heater calculations to identify potential real behavior of next 

fired heaters employing this type of burner in future. Namely, identification of flame length and fuel burnout 

profile provided by MPF model in relation to identified real variation of average heat flux profile along height of 

radian chamber are the valuable information for process plant and fired heater engineers which cannot be 

provided by CFD simulations. For analyzed burner system of fired heater results of MPF model shown (see 

Figure 7) that fuel is completely burnt in first fourth calculation segments, namely 61.3 % of fuel in the first 

segment, 19.8 % in the second segment, 14.3 % in the third segment and 4.6 % in the fourth segment. Among 

other, it for example indicates that flames reach length of 6.5 m. More importantly, these values confirms and 

quantifies an original hypothesis that the source of fired heater operating problems is an unexpected heat flux 

distribution from flue gas to tubes inside radiant chamber specific for this type of operated burners. 
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