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The article presents the modifications of the two classical kinetic models of binary coagulation: the 
Smoluchowski equation and the Becker-Döring model.  The main goal of these modifications is to submit 
approach for describing the influence of age-dependent properties of colliding clusters on the rate of 
aggregation process. The appropriate forms of generalized kinetic equations based both on the Smoluchowski 
equation and on the Becker-Döring model have been submitted and discussed.   

1. Introduction  
Contemporary chemical technologies often are aimed at production of materials with complex internal 
structure. For example, such materials have wide use in nano and smart-devices. Work of smart-devices with 
memory is characterized by dynamical formation of clusters of different orders. In order to create the methods 
for calculating intensity of transport phenomena in that case needs evaluation of the relaxation times and long-
range interactions of structural components of a medium. Importance of this problem is redoubled by that 
resources for effective controlling such processes are limited, and it is important to calculate and select the 
best values of governing parameters.  
Problems of modeling both high rate and nano-scale processes are in touch with deriving equations with 
retarded or divergent arguments that reflects the actual mechanism of transfer phenomena in the presence of 
memory phenomena (Blackman and Marshall, 1994). This approach allows considering the influence of 
relaxation times hierarchy on kinetics of aggregation process (Aldous, 1999).  The main point of the classic 
Smoluchowski’s and Becker-Döring equations is that speed of evolution of clusters concentration of given 
order depends on concentrations of the lowest orders clusters at the given moment (Ball, Carr & Penrose, 
1986). Thus, according to the mentioned kinetic equations the rates of formation of new clusters are 
determined only by number of simultaneous collisions between clusters at present, i.e. it is supposed that 
formation of a new cluster at collision occurs instantly, and the properties of colliding clusters are dependent 
on theirs orders only (Wattis, 2006). However, in reality, the process of formation of any cluster does not occur 
instantly, and will be stretched in time (Boem, Poor & Grant, 1998).  
So, one of the main, but practically non-discussed assumption which is intrinsic to the classic Smoluchowski 
and Becker-Döring equations, is that rate of evolution of clusters concentration of given order depends on 
concentrations of the lowest orders clusters at the given moment, and the kinetic properties of the clusters are 
proposed to be independent on their ages (Brener, 2006; 2011). However any given moment there exist a lot 
of clusters which have the same order but have different residential time in the disperse system.   
In the paper we submit the modifications of Smoluchowski and Becker-Döring kinetic equations for particles 
coagulation with allowing for age-dependent clusters properties. These properties can change in time both for 
high-order clusters and for monomers. Some results of the theoretical analysis and numerical experiments 
according to the model are submitted too. 
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2. General structure of modified kinetic equations 
Let us construct the formal scheme for deriving kinetic equations describing the aggregation process with 
allowance for the different ages of clusters and possible changes in their properties in dependences on ages.   
The discrete interpretation for evolution of the concentration of the clusters with given order i  is shown in 
Figure 1.  

          

Figure 1: Discrete scheme for evolution of the clusters concentrations   

Here 0
iC  is the concentration of clusters of i -th order at the initial moment; tΔ  is the time step; ( ),0 tCi Δ

( ),20 tCi Δ ( )tCi Δ30  are the concentrations of i -th order clusters which were arisen at the moment (0) and 

which have been observed at moments tΔ , tΔ2 , tΔ3 ;   ,I
iC ( ),tCI

i Δ ( )tC I
i Δ2  are the similar 

denotations for i -th  order clusters which were arisen at the moment ( tΔ ) and which have observed at 
subsequent moments, and etc.   
The above scheme gives grounds for the following modification of the Smoluchowski equation for binary 
coagulation (Davies, 1999, Brener, 2011) 
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Here the aggregation cores jiN ,  are functions of the delay times )( 11 ttt −=Δ  and ( )22 ttt −=Δ .  

Let us present the aggregation cores in the form of product of two factors.  
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The first factor C
jiN ,  is the concentration-factor describing the contribution of clusters arisen at different 

moments in the appropriate concentrations, and the second factor A
jiN ,  is the age-factor accountable to 

dependence of clusters properties on their ages. Such form agrees with the probability view, namely with the 
product of appropriate factors of influence. 

Let us consider further approach to calculate the factor  C
jiN ,  in accordance with our previous works (Brener, 

2011).  
As it follows from Onsager and Casimir hypothesis the relaxation of fluctuations obeys the usual 
phenomenological macroscopic laws on average (Ernst, 1986). The linear relation between time-derivatives of 
fluctuations amplitude and amplitude itself follows from this hypothesis, as it is shown by S.R. de Groot (De 
Groot, Mazur, 2013).  It was shown that this hypothesis didn’t contradict the kinetic theory (Meakin, 1987).  We 
suppose that simplest quasi-linear model equation for elements of the aggregation matrix on this approach 
reads (Brener, Balabekov & Kaugaeva, 2009) 
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In our case the characteristic times ji,τ  of the aggregation of i  and −j mers play the role of relaxation times, 

11 tts −=   22 tts −= . 

In Eq (3) the coefficients ir  on a level with the relaxation time ji,τ  play a role of control parameters of a type 

of  “inertness”, the parameter f answers to the environment and particles characteristics.  
Thus the aggregation matrix, satisfying Eq (3) and corresponding to the condition of fast relaxation in time

jit ,τ>> , can be written as 
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Thus, the master equation reads   
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Calculation of characteristic times depends, naturally, on the accepted mechanism of aggregation [3, 9, 10]. 
The certain ambiguity inherent to Eq (5) can be removed under deriving the generalized aggregation equation 
on the base of the Becker-Döring model (Doering, ben-Avraham, 1988, 1989) 
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Here  

ka  is the forward rate coefficients of aggregating  the r - order cluster with a monomer; kb  is the backward 

rate coefficients of the fragmentation of  the r - order cluster by throwing off  a monomer. 
The generalized Becker-Döring kinetic equation can be written as  
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It is known that the explicit solutions of the Smoluchowski equation have been obtained with the help of 
generating functions for only little number of certain special forms of aggregation cores (Wattis, 2006; Zahnov 
et al., 2011; Leyvraz, 2003). 
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The coefficients ka  and kb  can be just as (2) written in the multiplicative forms 
A
k

C
kk aaa = ;  A

k
C
kk bbb = ,                                                                                                                               (9) 

where the factors in Eq (9) have the similar interpretations as the factors in  form (2).  
Certainly, the complete analysis of the general forms (5) and (8) is very complex problem.    
Let us discuss below some ideas regarding the age-factors.  

3. Concept for age-factors of aggregation cores 
For modelling the aggregation cores depending on the cluster residential time (or age) the following heuristic 
considerations have been suggested. 
Cluster aggregation activity depends on the number of active centres on its surface (Ben-Avraham & Havlin, 
1982). In the case of a high-order fractal cluster, this surface has an intricate form and variable fractal 
dimension (Barabasi & Vicsek, 1991). If the process of aggregation stop, then the structuring of the cluster will 
be completed after some time, and the structure shape will be characterized by a minimum of free surface 
energy. 
Thus, there can be noted the following key points for systematic describing the age-depending properties of 
clusters: 
1. Drift to the steady state, i.e. to the state with minimum free surface energy (Alexander & Orbach, 1982). 
2. Perturbations of the above drift at the moments of new clusters capture (Bunde et al., 1985).  
The drift to the steady state in the case of the high-order cluster can take place both on the global cluster 
scale and on the local scales with generating of stable “islands” all over the cluster structure. 
Formation of stable “islands” can be described as fading of local fluctuations (Bunde et al., 1985).  The typical 
times of local stabilizations may be essentially less then global stabilization time. Moreover, it is the most 
probable that for high-order cluster the drift to the global steady state occurs through the set of local 
stabilizations chiefly, and the complete global stabilization time may be longer than process typical time.  
However, if there is a periodic capture of new particles, then, the cluster "undergoes" a certain story between 
the times of captures. And at each moment of clusters collisions the structure will be newly perturbed.  
This description is illustrated in Figure 2. 
 

                

Figure 2: Characteristic plot of the time-dependent surface free energy of complex cluster    

The question how properties of low-orders clusters, especially of monomers, can turn out depending on their 
ages should be considered separately.  Indeed, in that case it is hardly correct to explain the age-dependence 
of properties with the help of the changeable internal structure of clusters. However, certain parameters  (the 
surface charge of particles, particularly, which are defined as the result of interactions between clusters and 
environment) can change in time (Brener, 2011).  
In this work, however, we will not further consider the above questions.  In many processes the properties of 
monomers may be considered as independent on time (Duncan & Soheili, 2000). As for the high-order 
clusters, the main ideas for quantitative description of the age-factor may be deduced from tools of fractal 
theory (Herrmann & Stanley,1988). Namely, we offer to describe the age-factor through the relation between 
the full surface of fractal cluster and non-screened surface (Coniglio, Stanley, 1984) where the screen 
phenomenon is induced by increasing number of steady “islands” (Coniglio & Stanley,1984 ). 
Thus, this evaluation reads 
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Here i
ud  and j

ud  are the fractal dimensions of non-screened surfaces of the clusters of i -th   and  j - th 

orders (Cognilio, Stanley, 1984).   

4. Some numerical results 
We try to simplify the problem by using asymptotic behaviour of integrals in Eq (5). Namely, it is supposed that 
for small relaxation times (or big 1>>a ) we can use Laplace method in the neighbourhood of the time point t . 
Thus, after certain rearrangements the following asymptotic equation has been obtained (Brener, 2011): 
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Here T∗=τε  , Tt=θ ,  ∗τ  is the characteristic time of collision, T is the typical process time.  

It is interesting that preliminary estimation of the correctness of the above approximation looks as follows 
 

εεθ ln~ −in .                                                                                                                                                 (12)   

 

Figure 3: Dependence of dimensionless concentration on model time for aggregation matrix. Ni,j=1/ε, ε=1/10. 1 
– monomers, 2 – two-mers, 3 – three-mers. * - numerical solution by classical Smoluchowski equation, without 
special mark - numerical solution by modification (11) of Smoluchowski equation. 
 

Figure 3 depicts some results of experiments with reduced model (11).  
The results of these experiments showed that essential qualitative differences from the decisions of the 
classical equation have observed on initial sites. It confirms evaluation (12).     

5. Conclusions 
In the paper the modifications of Smoluchowski and Becker-Döring kinetic equations for clusters aggregation 
with allowance for the age-dependent clusters properties have been submitted. The clusters properties can 
change in time both for high-order clusters and for monomers. The main submitted concept is that high-orders 
clusters properties can change in time due to changing the internal structure and the number of active surface 
centers, at the same time for monomers this phenomenon can be conditioned by changing properties of the 
environment.  This approach allows considering the influence of relaxation times hierarchy on kinetics of 
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aggregation process. Some results of the theoretical analysis and numerical experiments according to the 
model are submitted.    
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