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The measure of similarity/dissimilarity is important to clustering algorithms. By using different similarity metrics, 
a clustering algorithm may achieve different clustering results. Many existed clustering methods employ classic 
distance measures such as the Euclidean and Manhattan distances as the measures of dissimilarity. In this 
paper, OWA aggregation operators with learned weighting vectors, such as DOWA and kNN-DOWA, are 
employed to aggregate the feature-based similarities between instances. The aggregated similarities provide 
more options in classic clustering algorithms and hence, increase their flexibility. The performances of proposed 
methods are tested in the classic hierarchical clustering. Experimental results shows that the DOWA and 
kNN-DOWA aggregated similarities have achieves better clustering accuracies than the Euclidean and 
Manhattan distances in hierarchical clustering. 

1. Introduction 

Data mining has become a commonly used technology of data engineering, which is able to solve many real 
problems (Ren, Liu and Zhang (2015), Wang et al. (2015)). Clustering analysis, in particular, has been widely 
applied to knowledge discovery, pattern recognition and many applications. The task of clustering is to assign a 
set of objects into groups (namely clusters) such that the objects in the same group are similar to each other, 
and dissimilar to those in the other clusters (Jain et al. (1999)). A number of clustering algorithms have been 
proposed in the literature, with many of them have been successful applied to solve real problems (Jin, Kou and 
Liu (2014), Górriz et al.  (2005).The classic clustering algorithms includes: hierarchical clustering, K-means, 
fuzzy c-means and so on. 
In many clustering algorithms, one of the key parameters is to select the similarity or dissimilarity measurements 
between instances. Such dissimilarity measurements include the Manhattan distance which calculates the 
absolute difference of feature (attribute) values of two instances based on each feature, and sum the 
differences of all the features. One possible drawback of using the classic Manhattan and Euclidean distances 
as dissimilarity measures in clustering are that all of the features are treated fairly, e.g., has the same weight in 
the aggregation. Therefore, the reliability of an individual feature is not considered. In real world applications, the 
reliabilities of different features in a data set can be very different. Many features in data sets contain noise due 
to inaccurate observation (Nettleton, Orriols-Puig and Fornells (2010)). Therefore, in this paper, the reliability 
based OWA aggregation operators are employed to aggregate the similarities between instances measured by 
different features for hierarchical clustering, in order to reduce the interference of noise data and increase the 
accuracy and robust of clustering algorithms. 
The remainder of this paper is organized as follows. Section II introduces the basics of the OWA (Ordered 
Weighted Averaging), DOWA (Dependent OWA) and kNN-DOWA (k-Nearest Neighbor DOWA) aggregation 
operators. Section III defines the reliability based aggregation of similarities observed from individual features 
and describes its application to hierarchical clustering. Section IV presents the experimental evaluation of the 
proposed approach and discusses the results. Finally, Section V concludes the paper and points out directions 
for further development. 
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2. Background 

Aggregation of several input values into a single output value is an indispensable tool not only for mathematics 
or physics, but for many real-world applications in engineering, economic, social, and other fields. It is also a 
useful tool in many real applications of information sciences such as group decision making (Xu (2006)), human 
resource management (Canós and Liern (2008)), and journal ranking (Su (2014)). Apart from the classical 
aggregation operators (such as average, maximum and minimum), another interesting and more general type 
of aggregation operator is the Ordered Weighted Averaging (OWA) operator. OWA is a family of aggregation 
operators which are parameterized based on the ordering of the inputs. The fundamental aspect of this family 
of operators is the reordering step in which the inputs are rearranged in descending order and then integrated 
into a single aggregated value. 
Definition 2.1 (Yager(1988)): A mapping OWA: ℝn→ℝ (ℝ is the set of real number) is called an OWA operator if  
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One feature of the OWA operator is: the input values in ( , , , , , )1 2a a a ani are descending ordered and form 

a new vector ( , , , , , )1 2b b b bnj before aggregation with W. In other words, the weights are assigned to the 

rearranged inputs, and then weighted-summed. Compared with the simple weighted-sum aggregation, the 
weight wj is not directly assigned with the original input ai, but assigned to the j-th position in the reordered input 
vectors. A common example of the OWA operator in real application is: remove the maximum and minimum 
inputs and average the remains, which is according to an OWA operator with the weighting vector: 
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Besides that, the commonly used special cases of OWA operator include the maximum, minimum and 
average. 
Although such an OWA-based weighted aggregation is straightforward and has been widely accepted, it 
under-weighted the role of the maximum and the minimum in decision-making, while eliminated the difference of 
importance among other input values (Wang and Xu (2008)). Therefore, Xu (2005) and Boongoen and Shen 
(2010) proposed two OWA operators which learn weights of the inputs from the input values based on their 
reliabilities. The two methods are named as the DOWA and kNN-DOWA operators, respectively. 

Definition 2.2 (Xu (2005)): Let µ be the mean of the inputs, ( , ) 1 (| | / | |)
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similarity between an input value to µ. A mapping DOWA: ℝn→ℝ is called a DOWA operator if 
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Definition 2.3 (Boongoen and Shen (2010)): Let { , , , , }1
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maximum distance between all the input values), then a mapping kNN-DOWA: ℝn→ℝ is called a kNN-DOWA 
operator if:  
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3. Aggregation of feature based similarities 

In general, a data set used in pattern recognition and machine learning contains many features (attributes). 
These attributes can be used to discover the degree of similarity or dissimilarity between the instances in the 
data set. Dissimilarity degree is normally expressed by using the distance between instances, while the degree 
of similarity can be expressed as a decreasing function of dissimilarity (such as reciprocal), which is usually 
normalized to [0, 1]. Since each instance can have different attribute values in different features, a pair of 
instances can have different degrees of similarity evaluated by different features. As it is mentioned above, not 
all of the features are reliable due to the existence of noise data. Therefore, this paper employs DOWA and 
kNN-DOWA to calculate the similarity metric in hierarchical clustering algorithm in order to eliminate the effect of 
noise data. For each pair of instances in a data set, the similarities between them are estimated based on each 
individual feature based on their values on that feature. The DOWA or kNN-DOWA operator is applied to 
aggregate the similarities evaluated on different feature. The aggregated results can be deemed as an all overall 
similarity degree between the pair of instances and are applied to clustering algorithms. 

3.1 Aggregation of Similarities 

An example extracted from the Iris data set Fisher (1936)) is employed to demonstrate the aggregation of 
similarities based on individual feature. The Iris data set is perhaps the best known database to be found in the 
pattern recognition literature. It is a classic in the field and is referenced frequently to this day. The Iris data set 
have four conditional features, which are A1: sepal’s length, A2: sepal’s width, A3: petal length and A4: petals 
width. It also includes a feature which indicated the class label of each instance. Table 1 shows a subset of the 
Iris data set which contains three instances. 

Table 1: Three Examples from Iris Data Set 

No. A1 A2 A3 A4 Class 

x1 5.6 3.0 4.1 1.3 Iris-versicolor 

x2 6.6 3.0 4.4 1.4 Iris-versicolor 

x3 6.0 2.2 5.0 1.5 Iris-virginica 

 
Using the absolute difference of attribute values as an example of dissimilarity metric on each individual 
feature, it can be calculated that the degrees of dissimilarity between x1 and x2 on the four given features are

( , )1 2
1 4

d x xA A (1.0, 0.0, 0.3, 0.1) . It can be seen from the example that when evaluating the dissimilarity 

between x1 and x2, the value given by feature A1 is significantly greater than the values given by the other three 
features. Using the known class label as a reference, one can confirm that x1 and x2 belong to the same class 
and hence, their degree of dissimilarity should be relatively small. Therefore, the degree of dissimilarity given 
by feature A1 not only conflicts with those given by other features, but also conflicts with the class labels. 

Similarly, when evaluating the degree of dissimilarity between x2 and x3, ( , ) (0.6, 0.8, 0.6, 0.1)2 3
1 4

d x xA A  

the value given by feature A4 is much smaller than values given by the other three features, and also conflicts 
with the class label. Therefore, the DOWA and kNN-DOWA operators are employed in this paper to aggregate 
the individual feature based dissimilarities between instances, e.g.: 

( , )=DOWA( ( , ), , ( , ))DOWA
1

d x x d x x d x xa a aA Ab b bn                                  (3.1) 

( , )=kNN-DOWA( ( , ), , ( , ))
kNN 1

d x x d x x d x xa a aA Ab b bn
                                      (3.2) 

where xa and xb are two different instances in a data set. Using the examples in Table 1 as well, when the 
DOWA operator is applied, the weighting vectors which with respect to ( , )1 2

1 4
d x xA A and ( , )2 3

1 4
d x xA A

are (0.1667, 0.2436, 0.3205, 0.2692) and (0.3039, 0.2255, 0.3039, 0.1667), respectively. In a similarly way, 
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when kNN-DOWA (k=1) is applied, the corresponding two weighting vectors are (0.188, 0.275, 0.261, 0.275) 
and (0.286, 0.250, 0.286, 0.184), respectively. By using the operators which consider the reliability of inputs, 
the "noise" values such as ( , )1 2

1
d x xA

and ( , )2 3
4

d x xA
can be weighted less than other normal values in the 

aggregation of feature based similarities. 

3.2 Applying the Aggregated Similarity to Hierarchical Clustering 

In addition to using different operators to aggregate the different similarities estimated on different individual 
features, the methods used to measure the dissimilarity between two instances on an individual feature can 
also be different. It is worth noticing that this paper only examines the influence of different aggregation 
operators in constructing the overall similarity between instances, thus, the evaluation of each individual feature 
based similarity simply employs the absolute difference between the attribute values:

( , ) | ( ) ( ) | d x x A x A xa ai iA b bi
, where Ai(xa) is the attribute value of xa in attribute Ai. It is worth noticing that 

other similarity metrics can also be employed. 
Hierarchical clustering is one of the most significant developments in clustering algorithms. In particular, 
hierarchical clustering builds a cluster hierarchy or a tree/dendrogram of clusters. Every cluster node contains 
child clusters; sibling clusters partition the points covered by their common parent. Such an approach allows 
exploring data on different levels of granularity. 
The main reason for using the hierarchical clustering to test the proposed aggregated fuzzy relations is that any 
forms of similarity or distance can be applied to the hierarchical clustering directly. Consequently, the clustering 
results are mainly dependent on the weights employed in the proposed aggregations of similarities. Given a 
data set with N instances, n attributes, the hierarchical clustering with DOWA or kNN-DOWA aggregation 
operator can be fulfilled in the following steps: 
Step1. Using Equation (3.1) or (3.2) to calculate the dissimilarity between two instances, considering the 
symmetric and reflexive properties, there are N(N-1)/2 dissimilarity values to be calculated; 
Step 2. Initialize each instance to a cluster, and N clusters will be gained, each of which contains only one 
instance; 
Step 3. Find the pair of clusters which share the link with the smallest value and then merge them to form a new 
cluster; 
Step 4. Update the values of links between the new cluster and all the old clusters; 
Step 5. Repeat step 3 and 4, till there is only one cluster (or m clusters, if m is given); 
where the link (in Steps 3 and 4) defines the way how the hierarchical clustering algorithm characterizes the 
similarity between a pair of clusters. The popular options of link in hierarchical clustering algorithms are the 
single-link and complete-link. In single-link, the link between two clusters is the minimum of the dissimilarity 
between two instances drawn from the two clusters, respectively. In complete-link, the link between two clusters 
is the maximum of all pairwise dissimilarity between instances in the two clusters. In either case, two clusters are 
merged to form a larger cluster based on minimum link criteria. The complete-link algorithm produces tightly 
bound or compact clusters while the algorithm suffers from a chaining effect Jain (1999)). Due to these reasons, 
the complete-link hierarchical clustering is used in the following experiment. 

4. Experiments and results 

In order to examine the performance of DOWA and kNN-DOWA operators in hierarchy clustering, the 
conventional Euclidean and Manhattan distances based hierarchical clustering algorithms are employed to 
conduct comparison. When calculating the reliability of inputs in kNN-DOWA, the number of neighbors is set to 
ceil of n/2. All these tested data sets contain only numeric conditional features, and each conditional feature in 
each data set in normalized to [0, 1]. The tested data sets are drawn from the UCI Machine Learning Repository 
(Frank and Asuncion (2010)). The results of clustering are evaluated by accuracy, where the known class labels 
of instances are employed as ground truth. Each data set is grouped into m clusters, where m is set to the 
number of known classes in each data set. The accuracy of clustering results are shown in Table 2, where each 
number is based on only one time experiment, since the single-link and complete-link hierarchical clustering do 
not contain random parameters. 
The experimental results show that: By using the DOWA and kNN-DOWA operators, the accuracy of 
hierarchical clustering is better than that of Euclidean or Manhattan distance based clustering. In three of the five 
tested data sets, DOWA operator achieved best accuracy. For kNN-DOWA operator, the parameter k is fixed to 
n/2 in this experiment, which may affect the result of kNN-DOWA. Therefore, Table 3 lists the clustering 
accuracies achieved by kNN-DOWA when k is set to 1/4n, 2/4n, 3/4n and 4/4n. It can be seen from Table 3 that 
kNN-DOWA has the potential of achieving higher accuracy, if k is properly selected. However, the change of 
accuracy is not monotonic with the change of k. Therefore, how to choose the best value /range of k for this 
application is potential direction to work on. 
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Table 2: Accuracy with Complete Link 

Data set Euclidean Manhattan DOWA kNN-DOWA 

Iris 88.00% 84.00% 82.67% 84.67% 

Wine 93.26% 94.38% 96.63% 94.38% 

Glass 51.87% 45.33% 52.34% 56.54% 

Ecoli 75.89% 77.38% 78.87% 76.79% 

Heart 56.30% 73.33% 75.56% 70.00% 

Table 3 kNN-DOWA Accuracy with Change of k 

Data set k=1/4n k =2/4n k =3/4n k =4/4n 

Iris 77.33% 84.67% 88.67% - 

Wine 95.51% 94.38% 93.82% 97.75% 

Glass 56.07% 56.54% 50.00% 50.00% 

Ecoli 77.38% 76.79% 76.49% 76.79% 

Heart 57.41% 70.00% 69.26% 76.67% 

5. Conclusions 

In this paper, OWA aggregation operators with learned weighting vectors, i.e., DOWA and kNN-DOWA are 
employed to aggregate the feature-based similarities between instances. Through the introduction, analysis on 
a famous data example (Fisher’s Iris) and experimental results, it can be seen that by using the DOWA and 
kNN-DOWA operators, the hierarchical clustering results are better than those of using classical distances in 
term of accuracy. 
However, the learning of reliability-based weights in aggregation operators needs extra computation. Further 
improvements in time efficiency of these methods are desirable. Besides, the best selection of k in the 
kNN-DOWA is also a challenging problem. 
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