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The multi-level supply chain consists on different levels of interveners containing warehouses, distribution 
centers, retailers, etc. In fact, it is reciprocal relationship between storage costs and transportation costs. The 
problem is how to optimize the combined costs of the storage and the transportation of the products across all 
the nodes of the supply chain. Model predictive control (MPC) is an advanced method of process control that 
has been in use in the complex dynamical systems like chemical process plant and supply chain. The MPC is 
usually used in supply chain management, under constraints like buffer limits and shipping capacities limits, 
based on approximations which make the future values of disturbance predicted, thus no recourse is available in 
the future. However, most real life applications are not only subject to constraints but also involve stochastic 
uncertainty. This paper proposes a costs optimization model use a stochastic model predictive control to 
optimize the combined costs of storage and shipping in a multi-level supply chain, to take into account the 
stochastic demand. Lastly, the costs optimization model’s simulation work is done in MATLAB, the experiment 

results show that the costs optimization model performs better than the naïve and the greedy control and the 
Model Predictive Control. 

1. Introduction 

With the technology offered nowadays, and all the facilities to access to the information, we cannot deny the 
shift that have been appeared in the behavior of customers; they have become more discerning and 
demanding but less loyal than before. Under these circumstances managers should find the balance between 
minimizing their costs and fulfilling the customer satisfaction. That is why the companies are more interested 
than ever in hunting waste and optimizing their costs. Their work (Danijel Jolevski, Ozren Bego (2015), Sherif A. 
Masouda and Scott J. Masonb (2015)) showed that profit could increases of up to 15 percent by proposing a 
model predictive control strategy to optimize supply chain. 
In this paper we consider a multi-product and multi-stage supply chain, to optimize the combined cost of 
storage and shipping under a stochastic demand. In the first section we describe the problem to be optimized, 
then in the second part we present the Stochastic Model Predictive Control that will be used to model the 
problem. In the third part we show how the problem is solved by the dynamic programming. Finally we present 
in the last section the numerical results for the comparison between the Stochastic Model Predictive Control 
and some of the most used models in optimization. 

2. Problem description  

In general the structure of a supply chain consists on different levels of interveners as showed in Fig. 1. The 
first level is retailers, who take the customer demands and try to satisfy it according to their level stock, and 
make orders to the next level of the chain. The second level is the distribution centers (DC). The centers are the 
responsible for the distribution of the products to the retailers to fulfill their needs. They also make orders to the 
third level, which is the Plant Warehouses. The stock capacity of the warehouses is bigger than the distribution 
centers. Finally we have the plants as the fourth level. They procure the row materials from their suppliers. 
(Jingzheng Ren, etc (2015), Sherif A. Masouda and Scott J. Masonb (2015)). 
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We consider a multi-product supply chain, and we assume that the products are independents from each other. 
Each node in the supply chain has to manage its storage level and at the same time satisfy the demand of its 
corresponding nodes from the former level.  

 

Figure 1: Structure of supply chain 

The problem consists on optimizing the combined costs of the storage and the transportation of the products 
across all the nodes of the supply chain. In fact, to minimize the storage cost, managers tend to make more 
shifts which increase the costs of transportation. And in the other hand, to have less cost in shipping, they store 
big amounts of the products to apprehend the fluctuation of the demand. Then the problem could be stated as 
follows: minimizing the costs of the storage and the shipping in a multi-level and multi-product supply chain, 
under a stochastic demand over a finite time horizon.  

3. The costs optimization model based on model predictive control  

3.1 Model Predictive Control  

Like many technical inventions, the idea of the Model Predictive Control (MPC) appears to have been proposed 
long before the model came to the forefront. The MPC was first implemented in industry under various names 
(dynamic matrix control, rolling horizon planning, and dynamic linear programming), long before a thorough 
understanding of its theoretical properties was available (Diehl, etc (2002), Gergely Takács and Boris 
Rohal’-Ilkiv (2012)). Academic interest in the MPC started growing in the mid eighties of the twenty century, 
particularly after two workshops organized by Shell (Zhou Wu, etc (2015), L. Van den Broeck, etc, (2011), M.R. 
García, etc (2012), Zhang, L. and Zhuan, X. (2014), Vichik, Sergey and Borrelli, Francesco (2014)).  
In the model proposed by Bellman to deal with multi-stage decision process, the future state of the system is 
totally defined by its history.  
In the model proposed by Bellman (1975) to deal with multi-stage decision process, the future state of the 
system is totally defined by its history.  

xt+1 = Axt + But                (1) 

The term 𝑥𝑡  is the state of the system at time t, while 𝑢𝑡 refers to the control action. In the mathematical 
theory, the objective is to minimize the cost function over the entire time horizon: 

𝑚𝑖𝑛𝑢𝑡  C𝑇(𝑥𝑇) + ∑ C𝑇(𝑥𝑇,𝑢𝑡)
𝑇−1
𝑡=0 minutCT(xT) + ∑ CT(xT,ut)

T-1
t=0          

(2) 

The algorithm of the Model Predictive Control is described below, mainly contain four interconnected sequential 
procedures. 
The Stochastic Model Predictive Control, is a closed-loop control, it takes into account the disturbance or the 
noise of the system in its expression of the state function. :  

𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡 , 𝑢𝑡,𝑑𝑡)xt+1 = ft(xt , ut,dt) 
(3)

578



 

Then the objective function of the stochastic problem will be expressed like in the Eq. (4).  

𝑚𝑖𝑛𝑢𝑡  𝔼𝑑[C𝑇(𝑥𝑇) +∑ C𝑇(𝑥𝑡 ,𝑢𝑡,𝑑𝑡)
𝑇−1

𝑡=0
] 

(4)  

3.2 State function  

In the case of the supply chain, the state function is expressed like below:  

xt+1 = xt + But + dt; t = 0,⋯ , T-1  
(5)  

The term 𝑥𝑡 ∈ ℝ𝑁,𝑃 is the state matrix of the system at the time t. It represents the amount of each one of the P 
products remaining in the stock of every node among the N nodes of the supply chain.  
In the other hand, the term 𝑢𝑡 ∈ ℝ𝑀,𝑃 is the matrix of control at the time t, it represents the amount of the P 
products transported by the M links existing between the nodes of the supply chain.  
The matrix 𝑑𝑡 ∈ ℝ𝑁,𝑃  expresses the noise applied to the system. In the case of the supply chain, this 
disturbance is caused by the stochastic demand for the P products in each one of the N nodes at the time t.  
The final term to define in the state function is the matrix B. Note that this matrix is independent of time; it 
expresses the incoming and outgoing node incidence. The dimension of the matrix is ℝ𝑁,𝑀; it is defined as 
showed in the equations Eq. (6) and Eq. (7).  

B = Bin − Bout  ;  t = 0, ⋯ , T − 1 
(6)

Bi,k
in(out) = {

1 , if the link Sk enters (exits)the node ni
0 ,otherwise                                                          

  
(7)  

3.3 Cost functions  

We consider the costs of warehousing and shipping as quadratic functions.  
 At the each level L of the supply chain, the cost of warehousing is expressed like the equation Eq. (8). 

With the term xt;l is a bloc of the rows of the matrix xt corresponding to the nodes of the level L of the 
supply chain.  

Wl( xt;l) = xt;l
T Qt;lxt;l 

(8)  

 At the each level L of the supply chain, the cost of shipping is expressed like the equation Eq. (9).  
 With the term ut;l is a bloc of the rows of the matrix ut corresponding to the nodes of the level L of the 

supply chain. 

S( ut;l) = ut;l
T Rt;lut;l 

(9)  

 Then the storage cost function and the transport cost function will be the sum of the costs in each level of 
the supply chain. In general we express the costs as quadratic functions. 

W( xt) = xt
TQtxt 

(10) 

S( ut) = ut
TRtut  (11) 

 The cost function in a time t, for all the nodes in the multi-level supply chain is expressed in the Equation 
(10). 

CT(xT , ut) = W( xt) + S( ut); t = 0,⋯ , T − 1  (12) 

 But at the end of the time horizon, we will not apply any control, so the cost function will be equal to the 
storage cost only. 

CT(xT) = W( xT) 
(13) 

3.4 The objective function and solution 

The stochastic problem is to minimize the objective function as expressed in the Equation (14) 

𝒥 = 𝔼[CT(xT) +∑ C(xt , ut)
T−1

t=0
] 

(14) 

And the state function is expressed as follows:  

xt+1 = xt + B
inut − B

outut + dt ;    t = 0,⋯ , T − 1 
(15) 
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Let Xt be the matrix of the matrixes, it is the representation of the history of the system until the time t. 

Xt = (x0 , x1 ,⋯ , xt) 
(16) 

Then the control policy at time t, is the function which according to the history Xt it gives the control ut to 
apply to minimize the objective function, under the constraints expressed in Equations (18), (19) and (20).  

ut = Φt(Xt) = Ψt(x0 , d0, ⋯ , dt−1) ;  t = 0,⋯ , T − 1 (17) 

 Buffer limits: For each node ni, we cannot store more than the maximum capacity from the product pj.  
 

0 ≤ xi,j ≤ xmax j 
(18)  

 Shipment capacities: For each link j, we cannot transport more than a maximum amount of the product j. 

0 ≤ uk,j ≤ xmax j 
(19) 

 And as we cannot transport more than we have in the stock, we have the constraint in the Equation (18).  
 

Boutut ≤ xt 
(20)  

Using the dynamic programming we solve the problem of the stochastic model predictive control. We found 
using Bellman recursion that the control policy is a linear state feedback.  

 Φt∗(xt) = Ktxt 
(21) 

4. Model simulation and example analysis 

We consider a multi-level supply chain with N = 6 nodes and M = 5 links dealing with P = 3 products (p1, p2, 
p3). 

 

Figure 2: Example of a model of a supply chain 

The links Si, i=1,..,5 show the possibility and the direction of the products’ shipping between the N nodes. 
In that case the state matrix 𝑥𝑡 ∈ ℝ6,3 will be like showed in the equation Eq. (22). Then, the term xi,j is the 
amount of the product pj stored at the node i at the instant t. Then, the column j describes the amount of the 
product pj stocked in every node of the supply chain at time t. In the same way, we define a row i in the matrix xt 
as the representation of the amount of all the products in the stock at the node i at the time t. 

𝑥𝑡 =

(

 
 

𝑥1,1 𝑥1,2  𝑥1,3
𝑥2,1 𝑥2,2  𝑥2,3
𝑥3,1 𝑥3,2  𝑥3,3
𝑥4,1 𝑥4,2  𝑥4,3
𝑥5,1 𝑥5,2  𝑥5,3)

 
 

 

(22) 
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The matrix of control 𝑢𝑡 ∈ ℝ5,3 is like showed in the equation Eq. (23). The term uk,j is the amount of the 
product pj shipped by the link Sk at the instant t. Then, the column j describes the amount of the product pj 

transported by every link in the supply chain at time t. Then a row k in the matrix ut is the representation of the 
amount of all the products shipped by the link k at the time t. 

ut =

(

 
 

u1,1 u1,2  u1,3
u2,1 u2,2  u2,3
u3,1 u3,2  u3,3
u4,1 u4,2  u4,3
u5,1 u5,2  u5,3)

 
 

  

(23) 

The matrix of the stochastic demand dt ∈ ℝ6,3 is like the state matrix xt. The term di,j is the amount of the 
product pj demanded at the node i at the instant t. Then, the column j describes the amount of the product p j 
demanded in every node of the supply chain at time t. In the same way, we define a row i in the matrix d t as the 
representation of the amount of all the products demanded at the node i at the time t. Note that for the 
numerical simulation we suppose that the demand has a lognormal distribution, i.e., where log(d) ~ N(µ,∑).  
Finally the dimension of the incidence matrix of the example is ℝ6,5; like it is represented in the equation 
bellow: 

B =

(

  
 

−1 −1 0
1 0 −1
0 1 0

   
0   0
−1   0 
0 −1

0  0   1    
0   0  0  
0   0  0  

  
   0     0  
1  0
0   1 )

  
 

 

(24) 

We will compare the stochastic model predictive control in the case of affine controller to other methods.  
We first consider the naïve greedy controller where the demand at time t is supposed equal to its mean.  
d(t) = E(d(t)) (25) 

The objective is to choose the control u(t) to minimize the costs at time t+1.  
The second method is the greedy controller. In this method we consider the demand is equal to its expected 
value. 
d̂(t) = E(d(t)|d(0),⋯ , d(t − 1)); t = 1,⋯ , T − 1  (26) 

d̂(t) = E(d(0)) = μ0 (27) 

The result of the simulation shows that the Stochastic Model Predictive Control performs better than the naïve 
and the greedy control and the Model Predictive Control as showed in the table1. 

Table 1: Simulation Results 

Model Type Cost mean Standard deviation 

Naïve greedy 2038.571 1507.3619 

Greedy control 2091.5627 1503.1351 

MPC 1440.532 885.5708 

SMPC 1440.0691 885.6372 

5. Conclusions  

The model predictive control is widely used to optimize the costs in the supply chain. But taking into account 
the stochastic character of the demand, the paper presents costs optimization model based on the Stochastic 
Model Predictive control to minimize the combined costs of shipping and storage multi-products in a multi-level 
supply chain. At last, using MATLAB, we compared the results of the proposed model with the naïve greedy 
control and the Greedy control, which show that the costs optimization model performs better than the naïve 
and the greedy control and the Model Predictive Control. 
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