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Susceptibility analysis is important in any study of debris flows. This paper presents a model for debris flow 
susceptibility analysis using a combination weighting and an improved fuzzy C-means algorithm. Twelve factors 
of influence were acquired by 3S technologies. Analytic hierarchy process (AHP) and entropy method were 
performed to obtain subjective and objective weighting of the factors, respectively. Game theory was carried out 
to determine the combination weighting since it provides analytical tools to model interactions among factors. An 
improved fuzzy C-means clustering analysis was applied to determine the susceptibility level of debris flows. 
This method is based on a particle swarm optimization algorithm, which is an evolutionary algorithm that can 
achieve global optimization, and is not sensitive to the initial cluster centers. Results showed that the 
susceptibility levels for one of the debris flow catchments was high, four were moderate, and five were low. Our 
quantitative assessments based on these nonlinear methods were consistent with field investigations. 

1. Introduction 

Debris flows are important geomorphic agents in mountainous area of Beijing. Susceptibility assessment 
represents an important criterion for engineers to understand the overall situation of the debris flow. Physical, 
empirical, and statistical approaches are widely used to evaluate debris flow susceptibility (Montgomery and 
Dietrich (1994); Carrara et al. (2008)). Although physical approaches are highly suited to susceptibility analyses, 
data for the factors used in these approaches cannot be obtained for large-scale debris flows (Dong et al. 
(2009)). Discriminant analysis and logistic regression are widely used as statistical tools in susceptibility 
analysis (Carrara et al. (2008)). Statistical approaches assume that the factors that caused debris flows are the 
same as those that will generate debris flows in the future. However, the availability of data should be 
ascertained before carrying out such an approach, since such data are difficult to obtain for most of China. 
This paper aims to determine debris flow susceptibility using a combination weighting and an improved fuzzy 
C-means clustering. We used a geographic information system (GIS), a global positioning system (GPS) and 
remote sensing (RS), collectively known as the ‘3S technologies’, to determine factors of influence. Analytic 
hierarchy process (AHP) and entropy method were performed to obtain subjective and objective weighting of the 
factors, respectively. A combination weighting method based on game theory was carried out to obtain a more 
rational factor weight. Susceptibility analysis was conducted with these weighted factors using a fuzzy C-means 
(FCM) algorithm. The FCM algorithm is a method used for clustering which allows data to belong to two or more 
clusters. This method is applicable to a wide variety of geostatistical data analysis problems (Bezdek et al. 
(1984)). Therefore, we used the FCM algorithm for sorting debris flow catchments with similar characteristics 
into clusters. However, the FCM method cannot be guaranteed to reach a global optimum, and the initial cluster 
centers greatly influence the clustering results. To overcome these disadvantages, Kennedy and Eberhart 
(1995) proposed the particle swarm optimization (PSO) algorithm to simulate the phenomenon of biological 
predation. The PSO algorithm is useful because it is simple to program (Poli et al. (2007)). We used this 
algorithm to remedy the defect in the FCM algorithm. Hence, we carried out a susceptibility analysis of debris 
flows based on a combination weighting and a PSO-enhanced FCM clustering algorithm. 
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2. Study area 

Ten catchments were investigated for susceptibility analysis, which were Dawa (DW), Lamadong (LMD), 
Lamanan (LMN), and Duitaizi (DTZ) from Miyun district, Nanjiao (NJ), Beijiao (BJ), and Xiqu (XQ) from 
Fangshan district, Damo (DM), Longmiao (LM), Donghe (DH) from Mentougou district. Geographical settings to 
the 10 debris flow catchments investigated are shown in Fig. 1. 

 

Figure 1: Geographical settings to the 10 debris flow catchments 

Based on the field investigation, many kinds of loose materials, such as collapse deposits and landslides, are 
distributed in the debris flow catchments. For example, collapse deposits in main channel of Dawa gully were 
shown in Fig. 2. There are lots of crushed stone in main channel of Nanjiao (Fig. 3). 

 

Figure 2: Collapse deposits in main channel of Dawa gully. Figure 3: Crushed stone in main channel of Nanjiao 

Maximum elevation difference of these ten debris flow catchments range from 0.32 km to 1.1 km. Average 
gradients of main channels are between 0.052 and 0.268. Annual precipitation is between 400 and 800mm. 
Due to intense human activity, the natural vegetation has been subjected to severe damage, with the irrational 
deforestation and reclamation. 

3. Methods 

Subjective weights were determined by AHP, meanwhile objective weights were acquired by entropy method. A 
combination weighting method based on game theory was performed to get a more rational weight. Finally a 
PSO-enhanced FCM is introduced for assessing debris flow susceptibility. 

3.1 Determination of weight 

3.1.1 Analytic hierarchy process 
AHP is performed in the following steps: (1) divide a complex problem into the component factors; (2) arrange 
these factors in a hierarchy order; (3) construct a pair-wise comparison matrix; (4) Comparison values can be 
determined from human judgments on the relative importance of each factor with respect to another factor 
within the same level. Comparisons were made through a scale of 1–9 based on Saaty’s (1977) scaling method. 
In AHP, the consistency ratio (CR) is utilized to judge the consistent degree of the comparison matrix, which is 
defined as (Saaty (1977)). 

CR=CI/RI  
(1) 

where RI represents the random consistency index, which depends on the dimension of the comparison matrix 
(Saaty (1980)). The consistency index (CI) for the comparison matrix with the largest eigenvalue 

max can be 
estimated by (Saaty (1977)). 

 maxCI= / ( 1)N N   , 
(2) 
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where max  is the largest eigenvalue and N is the dimension of the comparison matrix. 

Smaller CR results in a more rational assessment. The value of 0.1 is small enough according to Satty (1980). 
The weights of all factors within the subcriterion level for the goal level can be determined as follows. 
Assume that the criterion level involves v factors which include C1, C2, …, Cv; and their weights for the goal 
level are c1, c2, …, cv, respectively. Assume also that the subcriterion level includes n factors, specifically D1, 
D2, …, Dn and that their weights with respect to Cj (j = 1, 2, …, v) are d1j, d2j, …, dnj, respectively. When Di (i = 1, 
2, …, n) has no relationship with Cj, then dij is equal to 0. The weights of all factors within the subcriterion level 
d1, d2, …, dn, with respect to the goal level, can be determined according to Eq. (3), 
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3.1.2 Entropy weight 
Debris flows, as systems with a certain turbulence degree, are influenced by numerous factors with degrees of 
influence. Entropy weight method involves the following steps: Suppose Cij to be the jth factor of the ith debris 
flow catchment. The entropy of the jth (j = 1, 2, …n) factor can be determined by Eq. (4): 
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rij is the value of the jth normalized factor of the ith debris flow catchment. 
Then weights wj can then be calculated according to these entropy values, as shown in Eq. (5): 
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3.1.3 Combination weighting based on Game theory 
Game theory was used to construct a combination weighting optimality model (Myerson, (1991)). This method 
involves the following steps: If we define a set of weight vectors  1 2, ,..., nU u u u , then a linear combination of 

U  can be written as:  
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 U u , 

(6) 

where k  is the weight coefficient and ku  is a weight vector from the set. 

Determine the optimized *U  from all possible linear combinations. According to differential properties of the 
matrix, the optimal first derivative condition as follow: 
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(7) 

solve equation to get  1 2, , , n   , and then normalize  1 2, , , n    to get * 1, 2, , )k k n  （ . Finally we 

can acquire the combination weighting: 
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(8) 

3.2 A PSO-enhanced FCM clustering algorithm 

3.2.1 Fuzzy C-means algorithm 
The FCM clustering algorithm assumes that the whole data population can be grouped into C fuzzy clusters, 
where each cluster is specified by its center Vi (i = 1, 2,...,c) and an association of data points specified by their 
membership grade (Bezdek (1981)). According to a nonlinear function of the distances of data points from the 
cluster centers, membership grades are defined as: 
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where C is the number of cluster centers; Xj denotes the jth observation; Vi denotes the ith cluster center; d(Xj, 
Vi) is the distance between observation Xj and cluster center Vi; uij represents the membership grade of the jth 
observation to the ith set; and m is the fuzziness index. Iterative minimization of an objective function J was 
defined in terms of the weighted distances of the data points from the cluster centers: 
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where N is the total number of observations. The FCM method cannot be guaranteed to reach a global 
optimum. Hence, a PSO was introduced to overcome these disadvantages. 

3.2.2 Particle swarm optimization algorithm 
PSO is a metaheuristic designed by Kennedy and Eberhart (1995) with inspiration from swarming theory. A 
particle i in a D-dimensional space is represented by its position and velocity which can be described 
as  1 2, ,i i i iDX x x x  and  1 2, ,i i i iDV v v v  , respectively (Lin et al. (2015)). The personal best position of each particle 

and the global best position of the entire swarm are represented as  1 2, ,i i i iDP p p p  and  1 2, ,g g g gDP p p p  , 

respectively. The position and velocity of a particle i can be updated by: 

1 1 2 2( ) ( )id id id id gd idv wv r p x r p x      , 
(11) 

id id idx x v  , 
(12) 

where d is the dimension of searching space, w is the inertia weight ranging from 0.4 to 0.9, μ1 and μ2 are 
positive constants (μ1 = μ2 = 2), and r1 and r2 are two random numbers in the range [0, 1]. A linearly decreasing 
inertia weight w by starting at wmax = 0.9 and ending at wmin = 0.4 is used to control this kind of balance. 

max min
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w w
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   , 

(13) 

where t is the current iteration number and tmax is the total number of iterations. 
A fusion algorithm based on FCM and PSO is adopted: the position of each particle corresponds to the 
clustering result, each particle has a velocity V to change its position, and a fitness value f to evaluate the 
fitness of the position. In this study, the fitness value of each particle is represented by the accumulated 
distance between the centers of C cluster centers and their data points, which is computed by Eq. (10). 

4. Susceptibility analysis of debris flows 

4.1 Determination of factors of influence 
The mostly likely factors for debris flow susceptibility are geological, topographical, hydrologic, meteorological, 
and vegetation conditions. Roundness was also considered as a morphological condition. Population density 
was included as a factor of influence in our research. Twelve factors of influence were selected, they are: loose 
material supply length ratio (C1); loose material volume per square kilometer (×104m3/km2) (C2); maximum 
elevation difference of a catchment (km) (C3); average gradient of the main channel (C4); drainage density 
(km/km2) (C5); basin area (km2) (C6); total drainage length (km) (C7); drainage frequency (C8); maximum daily 
rainfall (mm) (C9); population density (C10); the ratio of vegetation area (C11); roundness (C12). All these 
factors were acquired by 3S technologies. A digital elevation model (DEM) was built using ArcGIS to obtain 
factors related to elevation. Positions of the watershed boundary and drainages were obtained by RS images. 
Loose material volume per square kilometer, loose material supply length ratio, and the ratio of vegetation area 
were acquired with a ruler and laser rangefinder during our field survey. 

4.2 Combination weights and assessing debris flow susceptibility 
As stated in Sect. 3.1.1, AHP structure diagram can be determined as Fig.4. Table 1 shows the comparison 
values of criterion level factors which have contributions toward the goal level. For example, a pair-wise 
comparison value of 2 in topographical condition versus geological condition represents the opinion of the 
respondent that topographical condition is important than geological condition. The weights of the subcriterion 
level factors can be determined. The geological condition includes C1 and C2. C2 is slightly more important 
than C1. Therefore, the weights of C1 and C2 in the geological condition are 0.33 and 0.67, respectively. 

 

Figure 4: Hierarchical structure of the AHP method for debris flow susceptibility 
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Table 1: Comparison matrix elements of the criterion level factors 

 G T H Me H-a V Mo 
G 1 1/2 1/2 1/3 1/2 1 1/2 
T 2 1 1 1/2 1 2 1 
H 2 1 1 1/2 1 2 1 

Me 3 2 2 1 2 3 2 
H-a 2 1 1 1/2 1 2 1 
V 1 1/2 1/2 1/3 1/2 1 1/2 

Mo 2 1 1 1/2 1 2 1 
Note: G, T, H, Me, H-a, V, and Mo is the abbreviation of Geological, Topographical, Hydrologic, Meteorological, 
Human activity, Vegetation, and Morphological. 

Table 2: Comparison matrix elements of C3–C5 for topographical condition 

 C3 C4 C5 
C3 1 1/3 1/2 
C4 3 1 2 
C5 2 1/2 1 

Table 3: Comparison matrix elements of C6–C8 for hydrologic condition 

 C6 C7 C8 
C6 1 2 3 
C7 1/2 1 2 
C8 1/3 1/2 1 

 
Objective weights of the factors were determined by using the entropy method. Then the method introduced in 
Sect. 3.1.3 was used to determine combination weights. The subjective, objective, and combination weights of 
factors C1 to C12 are shown in Table 4 

Table 4: The subjective, objective, and combination weights of factors C1 to C12 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

subjective 0.029 0.059 0.034 0.113 0.062 0.113 0.062 0.034 0.209 0.113 0.059 0.113 

objective 0.084 0.096 0.073 0.084 0.074 0.095 0.092 0.078 0.089 0.081 0.077 0.078 

combination 0.032 0.062 0.032 0.110 0.061 0.111 0.062 0.032 0.207 0.110 0.061 0.110 

 
Susceptibility analysis of debris flows was carried out with a PSO-enhanced FCM method based on factors and 
their weights. Our classification for the ten debris flow catchments based on the susceptibility analysis is shown 
in Table 5 

Table 5: The factors and the susceptibility results of 10 debris flow catchments 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Result 
DW 0.35 1.28 0.54 0.14 3.90 2.13 7.5 3.29 362.8 70.0 30 0.68 L 
LMD 0.26 0.38 0.35 0.12 3.54 1.43 4.5 3.49 362.8 130.0 40 0.62 L 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Result 
LMN 0.24 1.19 0.32 0.09 2.37 2.51 6.6 2.79 362.8 240.0 35 0.66 L 
DTZ 0.40 0.61 0.43 0.07 2.55 3.69 9.3 2.17 362.8 90.0 28 0.67 M 
NJ 0.10 1.77 1.10 0.05 1.91 24.34 29.5 0.62 460.0 250.0 15 0.81 H 
BJ 0.10 0.51 0.77 0.07 3.66 9.96 11.0 1.34 385.3 100.0 20 0.43 M 
XQ 0.50 7.80 0.91 0.14 3.35 7.26 13.2 1.24 409.2 80.0 18 0.56 M 
DM 0.70 5.71 0.86 0.23 1.20 4.87 9.6 1.64 224.8 130.0 25 0.65 M 
LM 0.05 0.17 1.09 0.27 1.83 3.95 6.7 1.01 190.7 170.0 10 0.67 L 
DH 0.08 0.37 1.03 0.09 1.32 5.58 8.5 0.90 190.7 160.0 9 0.78 L 

Note: DW, LMD, LMN, DTZ, NJ, BJ, XQ, DM, LM, and DH is the abbreviation of Dawa, Lamadong, Lamanan, Duitaizi,  
Nanjiao, Beijiao, Xiqu, Damo, Longmiao, and Donghe. H, M, L is the abbreviation of high, moderate, low. 

5. Discussion and conclusions 

Ten debris flow catchments located in mountainous area of Beijing, China, were investigated. Twelve factors 
factors reflect various geological, topographical, hydrologic, meteorological, morphological, human activity, and 
vegetation conditions of a catchment. AHP and entropy method were performed to obtain subjective and 
objective weighting of the factors, respectively. The combination weighting method based on game theory was 
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used to get a more rational weight. Weights of factors (from C1 to C12) were determined to be 0.032, 0.062, 
0.032, 0.110, 0.061, 0.111, 0.062, 0.032, 0.207, 0.110, 0.061, and 0.110 respectively. 
A susceptibility analysis for debris flows was carried out with a PSO-enhanced FCM clustering algorithm based 
on these factors and their weights. Results showed that the debris flow susceptibility of the Nanjiao catchment 
was high, the Duitaizi, Beijiao, Xiqu, and Damo catchments had moderate susceptibility, while the other five had 
low values. 
The limitation of the analysis method used in this study is susceptibility of a single debris flow catchment cannot 
be assessed with this method. On a final note, the results of our susceptibility analysis, identified debris flow 
catchments with high susceptibility that should be flagged for environmental management. 
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