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For fast detection of inorganic phosphorus fractions and their phosphorus contents in soil, a method 
employing near-infrared spectroscopy (NIRS) combined with partial least squares (PLS) and least squares 
support vector machine (LS-SVM) was proposed. Fifty soil samples for each of iron phosphate, magnesium 
phosphate, calcium phosphate and aluminum phosphate, with application rates of phosphate being 
respectively 0, 60, 200 and 500 mgkg-1, were taken to acquire the near infrared reflectance spectroscopy of 
the soil samples. PLS model regression coefficients were used to obtain the effective wavelengths (EWs) of 
the four phosphates as the input of LS-SVM to create a prediction model for detection of these phosphates 
and their phosphorus contents in the soil samples. The result showed that LS-SVM model using EWs as input 
had an advantage over PLS model. The correlation coefficient R2 of EWs-LS-SVM model was respectively 
0.90, 0.86, 0.88 and 0.85, and the mean square error of prediction (RMSEP) was respectively 12, 10, 15 and 
18. For classification of various phosphates, a number of wavelengths equal to 12 yielded the optimal result 
with a 2% minimum classification error. The result showed that the method of NIRS combined with PLS and 
LS-SVM offered high accuracy and allowed for fast detection of inorganic phosphorus fractions and their 
phosphorus contents in soil. 

1. Introduction 

For a long time available phosphorus content in soil has been used as the basis to determine abundance or 
deficiency of phosphorus in soil, with little consideration on fractionation of phosphorus in soil. Phosphorus in 
soil includes organic phosphorus and inorganic phosphorus, of which inorganic phosphorus accounts for 60%-
80% of total phosphorus and is a major source of phosphorus needed by plants (Gomezet al., 2008; Reeves 
and Smith, 2009; Pan et al., 2009; Reeves, 2010). Most inorganic phosphorus in soil takes the form of 
phosphate, so detection of phosphates and their phosphorus contents in soil is an important way to know 
about the conditions of phosphorus in soil, which provides a theoretical basis for correctly understanding and 
evaluating the effect of inorganic phosphorus fractions in soil on phosphorus nutrition in plants. In recent years, 
using near-infrared spectroscopy to obtain soil nutrient information becomes a focus of study both at home 
and abroad (Bogrekci and Lee, 2006; Bao et al., 2007; Barthes et al., 2008; Brichlemyer and Brown, 2010; 
James and Reeves, 2010; Minasny et al., 2011). It is necessary to carry out research on a fast detection 
method for inorganic phosphorus fractions and their phosphorus contents in soil.  
Domestic and foreign scholars have carried out fruitful research on the application of near-infrared 
spectroscopy in soil neighborhood. Delel Abdi et al. (2012) utilized near-infrared spectroscopy to predict 
phosphorus in soil and its relevant attributes, who concluded that the prediction of PH value, magnesium, 
calcium and manganese in soil was successful, while prediction of total phosphorus, total nitrogen, iron, zinc 
and aluminum was feasible. Guillaume Debaene et al. (2014) utilized near-infrared spectroscopy to predict 
organic carbon, N, PH value, P2O5, K2O, Ca, Mg, K and Na contents in soil, who concluded that it was 
appropriate to use PLS and SVM for modeling. Liu Xuemei et al. (2012) utilized near-infrared spectroscopy to 
measure available nitrogen and potassium contents in soil and used PLS and LS-SVM methods respectively 
to create a correction model.  
Currently the study on NIRS prediction of phosphorus fertilizer in soil mainly focuses on the prediction and 
analysis of total fractions, while NIRS has not been used for detection of inorganic phosphorus fractions and 
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their phosphorus contents in soil. This paper takes the agricultural soil along the Yangtze River region in 
Zhenjiang, Jiangsu as the object of study, in which inorganic phosphorus exists mainly in the form of iron 
phosphate, magnesium phosphate, calcium phosphate and aluminum phosphate. NIRS technology was 
utilized to obtain reflectance spectrum data of different phosphates, and PLS model regression coefficients 
were used to obtain the effective wavelengths (EWs) of the four phosphates as the input of LS-SVM to create 
a prediction model for detection of these phosphates and their phosphorus contents in soil. 

2. Experiments  

2.1 Soil samples 

Field data for this study was acquired from the agricultural land along the Yangtze River region in the city of 
Zhenjiang. Due to its location in the Middle and Lower Yangtze Valley Plain, most of the soil is yellow-brown 
soil formed by the impact of the Yangtze River. Here inorganic phosphorus in soil exists mainly in the form of 
iron phosphate, magnesium phosphate, calcium phosphate and aluminum phosphate. Sampling depth was 1-
20cm after removal of topsoil, and sampling weight was 1.0-1.5kg. To minimize man-made error, the soil 
samples taken were spread out in a room and air-dried naturally. After air-dried, the soil samples were ground 
in a grinder to remove all nutrients and organic matters, then passed through a 2mm sieve, numbered and 
sealed for storage. After quartering, two quarters of the soil samples each totaling 200 were taken, the first 
quarter for routine chemical measurement and analysis, and the second quarter for near-infrared spectral 
scan and analysis.  
To study the effect of different phosphorus compounds on soil reflectance spectrum, four phosphates, namely 
iron phosphate, magnesium phosphate, calcium phosphate and aluminum phosphate, were taken to undergo 
soil sample treatment as shown in Table 1 and obtain 50 study samples for each of the four different 
phosphates. HCL solution of 0.1mol/L and deionized water were used to remove phosphorus in the existing 
soil samples. After filtering, pH value and phosphorus concentration in the soil samples were analyzed 
(Mouazen et al., 2005, 2006).  

Table 1: Soil sample treatment 

Phosphorus 
compound 

Particle size 
(mm) 

Moisture 
content 

PH 
value 

Application rate of phosphorus 
compound (mgkg-1) 

Iron phosphate 

2 8% 6 

None 0 
Magnesium 
phosphate Minor 60.0 

Calcium phosphate Moderate 200.0 
Aluminum 
phosphate Massive 500.0 

 
Table 2 shows the application rates of these four phosphate fertilizers and the average actual total phosphorus 
concentrations. The highest and lowest phosphorus concentrations in the soil samples were respectively 98 
mgkg-1 and 11 mgkg-1. Although phosphorus in the soil samples had been removed, the phosphorus 
concentration still ranged from 11 to 18 mgkg-1.  

Table 2: Phosphate fertilizer application rate and average actual total phosphorus concentration 

Compound  Phosphate fertilizer application rate (mgkg-1)  Average actual total phosphorus 
concentration (mgkg-1)  

Iron phosphate  

0 18 
60.0 22 

200.0 38 
500.0 60 

Magnesium 
phosphate  

0 12 
60.0 22 

200.0 36 
500.0 98 

Calcium 
phosphate  

0 13 
60.0 21 

200.0 34 
500.0 78 

Aluminum 
phosphate  

0 11 
60.0 18 

200.0 48 
500.0 90 
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2.2 Instrument and equipment  

Fourier transform near-infrared spectrometer of Swiss Arcspectro FT Rocket type with a measurement range 
of 700-2600 nm was used for spectroscopic measurement. The soil was measured for spectral sampling at an 
interval of 1 nm, scanned for 15 times at a resolution of 3 nm and probe viewing angle of 25°, using a 
12V/45W tungsten halogen lamp as light source.  

2.3 Spectral acquisition and data preprocessing  

The soil samples were placed into a sample holder, with the spectrometer 12cm above the soil surface. 
Measurement was done using diffuse reflection approach and a light incident angle of 45°. Since scattering 
caused by instrument noise and sample particle size can affect the analysis and extraction of spectral 
information, the spectrum of a soil sample was acquired for three times to obtain the average value as the final 
spectral data for that soil sample. To reduce the effects from high frequency random noise, baseline drift, 
inhomogeneous light scattering in sample, etc., spectral data was preprocessed with multiple scattering 
correction (MSC) and first order difference.  

 

Figure 2: Average absorbance of four phosphates 

The absorbance spectrum of the four phosphates is shown in Figure 2. From the figure above a conclusion 
can be made that there are three significant peaks for iron phosphate in the near-infrared spectrum, 754 nm, 
1334 nm and 1911 nm, while from 2120 nm to 2600 nm, the absorbance value increases gradually. There are 
two significant peaks for magnesium phosphate, 1336 nm and 1855 nm, while from 2265 nm to 2600 nm, the 
absorbance value increases gradually. There are two significant peaks for calcium phosphate, 1369 nm and 
1868 nm, while from 2135 nm to 2600 nm, the absorbance value increases gradually. There is one significant 
peak for aluminum phosphate, 1908 nm, while from 2065 nm to 2600 nm, the absorbance value does not 
change significantly.  

 

Figure 3: Average absorbance of soil samples with different concentrations: (a) iron phosphate, (b) 

magnesium phosphate, (c) calcium phosphate, (d) aluminum phosphate 
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Figure 3a shows that from zero to high iron phosphate concentration, the average absorbance of soil samples 
has two peaks, 1396 nm and 1933 nm, which is due to the effect of soil moisture on the spectrum. As soil 
moisture increases, soil reflectance decreases while absorbance increases. In the 700 nm- 1054 nm zone, 
phosphorus concentration and absorbance in iron phosphate exhibit linear relationship; the lower absorbance 
is, the lower phosphorus concentration will be. Figure 3b shows that from zero to high magnesium phosphate 
concentration, average absorbance of soil samples has two peaks, 1374 nm and 1945 nm, and the water 
absorption zone is also obvious. In the 700 nm- 1129 nm zone, phosphorus concentration and absorbance in 
magnesium phosphate exhibit linear relationship. Figure 3c shows that from zero to high calcium phosphate 
concentration, average absorbance of soil samples has two peaks, 1378 nm and 1982 nm, and the water 
absorption zone is also obvious. In the 700 nm- 1160 nm and 2356 nm- 2600 nm zones, phosphorus 
concentration and absorbance in calcium phosphate exhibit linear relationship. Figure 3d shows that from zero 
to high aluminum phosphate concentration, average absorbance of soil samples has two peaks, 1374 nm and 
1945 nm, and the water absorption zone are also obvious. In the 700 nm- 1129 nm and 2380 nm- 2600 nm 
zones, phosphorus concentration and absorbance in aluminum phosphate exhibit linear relationship.  

3. Creating LS-SVM prediction model  

PLS model regression coefficients were used as the input of LS-SVM to obtain the EWs of iron phosphate, 
magnesium phosphate, calcium phosphate and aluminum phosphate. Effective wavelengths were selected 
according to the PLS model regression curve preprocessed with first order difference, mainly based on the 
assumption that there should exist a maximum value of absolute regression coefficient for wavelengths within 
a certain band range. For example, the wavelength between the peak and trough of the regression curve is an 
effective wavelength. The result is shown in Table 3.  

Table 3: Four effective wavelengths of phosphate 

Phosphate  Effective wavelength ( nm)  

Iron phosphate  867,934,1022，1464,1934,2152,2208,2450 

Magnesium phosphate  845,1023，1419,1866,1938,2055,2230,2430 
Calcium phosphate  985,1022，1439，1948,2123,2378,2442，2516 

Aluminum phosphate  908,1024，1374,1467，2231,2387,2465,2550 

4. Experimental results and analysis  

 

Figure 4: EWs-LS-SVM phosphorus concentration prediction model: (a) iron phosphate, (b) magnesium 

phosphate, (c) calcium phosphate, (d) aluminum phosphate 

Figure 4 shows the prediction result for phosphorus concentration of various phosphates in the soil samples 
using EWs-LS-SVM model, where R2 is 0.90, 0.86, 0.88 and 0.85, and RMSEP is 12, 10, 15 and 18, 
respectively. The result is better than the correlation coefficient R2 and RMSEP for phosphorus concentration 
of various phosphates established using PLS prediction model, as shown in table 4.  
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Table 4: PLS results for the soil samples with four compounds (the number of factors was six) 

Phosphate  
Calibration value  Verification value  

R2 RMSEC (mgkg-1)  R2 RMSEP (mgkg-1)  

Iron phosphate  0.80 16 0.75 18 

Magnesium phosphate  0.82 12 0.68 15 

Calcium phosphate  0.72 18 0.65 20 

Aluminum phosphate  0.70 20 0.50 21 

 
The EWs-LS-SVM model performs better than the PLS model, probably because it uses PLS model 
regression coefficient to obtain effective wavelength, and also because LS-SVM takes into account the 
nonlinear information of spectral data, thus improving prediction precision.  

Table 5: Classification results for the soil samples with four phosphates 

Criteria  Number of selected wavelengths  Error (%) 

Correlation coefficient > 0.6, stepwise discriminant analysis  45 14.5 

Correlation coefficient > 0.65, stepwise discriminant 
analysis  15 2.0 

Correlation coefficient > 0.7, stepwise discriminant analysis  3 45.5 

 
Table 5 shows the classification result for the four phosphates of selected wavelengths in the soil samples 
under different given conditions. The threshold level of the correlation coefficient was increased (r=0.7), and 
stepwise discriminant procedure was used to reduce the number of selected wavelengths, which, however, 
resulted in higher classification errors (45.5%). The threshold level of the correlation coefficient was decreased 
(r=0.6), and stepwise discriminant procedure was used to decrease the number of selected wavelengths, 
which reduced classification error to 14.5%. A correlation coefficient equal to 0.65 resulted in a lower 
classification error (2.0%). Table 5 shows that when the number of independent variables (number of selected 
wavelengths) increases, classification error increases, and when the number of independent variables 
decreases, classification error increases again. When the number of wavelengths was equal to 15, a lower 
classification error (2.0%) resulted.  

5. Conclusions  

(1) It is feasible to use near-infrared spectroscopy (NIRS) for fast detection of inorganic phosphorus fractions 
in soil.  
(2) PLS model regression coefficients were used to obtain the effective wavelengths (EWs) of four phosphates.  
(3) The effective wavelengths (EWs) of the four phosphates were used as the input of LS-SVM to create a 
EWs-LS-SVM correction model for decoupling, measuring and quantifying the phosphorus concentrations in 
the phosphates. R2 was 0.90, 0.86, 0.88 and 0.85, and RMSEP was 12, 10, 15 and 18, respectively, which 
were better than those established with the PLS prediction model, indicating that it is the only characteristic 
directly associated with spectral prediction within the near infrared zone. For classification of phosphates, a 
number of wavelengths equal to 15 yielded the optimal result with a 2% minimum classification error 
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