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Sensitivity analysis is an integral step in the interpretation of the solutions of optimization models, 

particularly when there are uncertainties in the numerical values of model parameters. Conventional 

approaches to sensitivity analysis rely on the use of shadow prices in linear models and Lagrange 

multipliers in non-linear models. Modern commercial optimization software packages are able to 

automatically generate such sensitivity coefficients to allow rapid post-optimality analysis. However, in the 

case of non-linear models, Lagrange multipliers have two distinct limitations. First, they represent only 

changes in the optimal value of an objective function with respect to small changes in parameter values, 

and thus remain valid only near the immediate vicinity of the nominal design point. Secondly, each 

Lagrange multiplier gives only the effect of the change of one parameter, assuming that all other 

parameters remain at their nominal values. Hence, they provide no information about joint effects or 

interactions caused by simultaneous changes in parameter values. In this paper, we present a strategy 

based on design of experiments (DOE) to generate a sensitivity surface, which we define as the mapping 

of the optimal model solution against a range of values of the optimization model parameters. Space-filling 

designs are used as a basis to generate proxy regression models with quadratic and interaction terms, in 

order to capture curvature of the sensitivity surface. The resulting proxy model contains more information 

than is available in conventional sensitivity analysis. In particular, this approach shows curvature and 

interaction effects that are not reflected when Lagrange multipliers are used.  We present case studies 

based on problems drawn from process systems engineering (PSE) literature to illustrate this 

comprehensive sensitivity analysis strategy.  

1. Introduction 

Optimization models have been used in chemical engineering design problems since the 1950s (Fenech 

and Acrivos, 1956). Mathematical programming techniques have become an essential tool in process 

systems engineering (PSE) in general (Stephanopoulos and Reklaitis, 2011), and process synthesis 

specifically (Cremaschi, 2014). Optimization methods are used nowadays in conjunction with process 

simulation software (e.g., Sun et al., 2014). Initial approaches dealt with deterministic models whose 

parameter values were assumed to reflect precisely known physical or economic quantities. However, it 

eventually became clear that uncertainties are inherently present when mathematical models are used to 

represent real systems; as a result, different approaches have been developed for dealing with 

uncertainties. For example, sensitivity analysis around the optimal results can be used (Seferlis and 

Hrymak, 1996). Such capabilities are usually available as a default feature in commercial optimization 

software. A wide array of optimization methodologies, such as stochastic programming, fuzzy 

programming, chance-constrained programming, etc. – have also been proposed for various PSE 

problems (Sahinidis, 2004).  

Conventional sensitivity analysis features found in commercial optimization software focus on determining 

shadow prices (for linear programs or LPs) or Lagrange multipliers (for nonlinear programs or NLPs), both 

of which give the local sensitivity of the optimal solution to infinitesimal changes in values of the constant 

term in each constraint individually. Note that this definition results in two limitations. First, this form of 
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sensitivity analysis is only applicable for exploring the immediate vicinity of a nominal optimum, while, in 

practice, the degree of sensitivity will often change for finite deviations from this point. Second, each 

sensitivity coefficient gives the ratio of change in optimal value per unit change in a given parameter, 

assuming all other parameters remain fixed at their nominal values. Thus, joint effects, or interactions, are 

not reflected in such results.  

In this paper, we propose a sampling-based sensitivity analysis procedure for process synthesis models in 

PSE applications using space filling experimental designs. Such techniques have been developed to allow 

design of experiment (DOE) philosophy to be applied to various forms of “computational experiments” 

(e.g., Ye, 1998). The rest of this paper is organized as follows. Section 2 discusses the methodology 

based on space-filling experimental designs. Next, Sections 3 and 4 illustrate the approach using two 

benchmark problems from PSE literature. The sensitivity analysis approach used here is compared with 

standard analysis via Lagrange multipliers. Concluding remarks and prospects for future work are then 

given in Section 5. 

2. Methodology 

The sampling-based sensitivity analysis approach proposed here is based on the Latin hyperube space 

filling design proposed by Ye (1998). As with other space filling designs, this approach makes use of 

experimental points dispersed through an n-dimensional factor space, as illustrated in Figure 1. 

 

Figure 1: A two-factor Latin hypercube design with 15 runs 

The general procedure is as follows: 

 Consider an optimization model with objective function f(x) and decision variable vector x, whose 

optimal solution is f(x*) 

 Assume that the model contains n uncertain or imprecise parameters, given by vector b, whose 

elements are limited by lower bound vector bL and upper bound vector bU 

 The uncertain parameters thus define an n-dimensional factor space, such that a unique optimal 

solution can potentially be found for each point within the factor space  

 A Latin hypercube space filling design is used to sample the factor space with enough points to 

ensure sufficient degrees of freedom for subsequent statistical analysis 

 The optimization model is solved in turn for each point in the design  

 A proxy polynomial regression model is then derived empirically from the solutions found in the 

previous step; this model gives a statistically significant estimate of f(x*) as a function of b, thus 

allowing the optimal solution of the original model to be predicted for any value of b without 

having to re-solve it further 

The methodology is illustrated in the succeeding sections using two benchmark NLP problems from PSE 

literature. The optimization models are solved using LINGO 13.0 developed by Lindo Systems. This 

software is equipped with a Global Solver utilizing a branch-and-bound algorithm (Gau and Schrage, 2003) 

for solving non-linear models. The generation of the space-filling experimental designs, and subsequent 

data analysis to generate the proxy regression models, are accomplished using JMP Pro v.11 developed 

by SAS. 
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3. Case Study 1 

This simplified process plant flowsheet optimization example is based on the NLP problem by 

Stephanopoulos and Westerberg (1975), as described in the compilation of benchmark problems by Ryoo 

and Sahinidis (1995). The NLP formulation is: 

minimize  x1 
0.6

 + x2 
0.6

 – 6 x1 – 4 x3 + 3 x4  (1a) 

subject to:  

3 x1 + x2 – 3 x3 = 0  (1b) 

x1 + 2 x3 ≤ F1  (1c) 

x2 + 2 x4 ≤ F2  (1d) 

0 ≤ x1 ≤ 3  (1e) 

0 ≤ x2 ≤ 4  (1f) 

0 ≤ x3 ≤ 2  (1g) 

0 ≤ x4 ≤ 1  (1h) 

where the numerical values of two of the model parameters are given by the intervals F1  [3.8, 4.2] and 

F2  [3.8, 4.2]. The objective function corresponds to minimization of total cost (Eq 1a). In the original 

model, F1 = F2 = 4 and the optimal objective function value is 4.514. A Latin hypercube design with eight 

points was generated and the model solved for each design point. Then, the an empirical 2
nd

-order 

polynomial regression model with two-factor interaction terms was derived from this data, using F1 and F2 

as factors, and the optimal objective function value as the response. Table 1 shows the term-by-term 

statistical analysis of this proxy model. Note that p-values of 0.05 or less signify statistically significant 

effects, while the parameter signs indicate the direction of the effect. Figure 1 shows the behaviour of the 

optimal objective function value as a function of F1 and F2. Note the pronounced response surface 

curvature and inflection, as a consequence of the statistically significant quadratic and interaction terms. 

Such effects cannot be clearly indicated by conventional sensitivity analysis; for instance, in this case, 

when F1 = F2 = 4, the Lagrange multipliers for Eq(1c) and (1d) are both zero. 

Table 1: Effect of model parameters F1 and F2 on optimal objective function value 

Term Estimate p-value Remark 

F1 0* > 0.05 Not statistically significant 

F2 0.147 < 0.0001 Statistically significant negative effect 

F1
2
 0.004 0.0069 Statistically significant negative effect 

F2
2
 +0.156 < 0.0001 Statistically significant positive effect 

F1F2 0.040 < 0.0001 Statistically significant negative effect 

*Statistically insignificant terms effectively have zero value 
 

 

Figure 2: Response surface of optimal Total Cost as a function F1 and F2 
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4. Case Study 2 

This Heat Exchanger Network example is based on the NLP model of Liebman et al. (1986), as modified 

by Ryoo and Sahinidis (1995). The NLP formulation is: 

minimize  x1  + x2 + x3 (2a)  

subject to:  

 100,000 (x4 – 100) = U1 x1 (300 – x4) (2b) 

 100,000 (x5 – x4) = U2 x2 (400 – x5) (2c)  

 100,000 (500 – x5) = U3 x2 (600 – 500) (2d)  

 0 ≤ x1 ≤ 15,834 (2e)  

 0 ≤ x2 ≤ 36,250 (2f)  

 0 ≤ x3 ≤ 10,000 (2g)  

 0 ≤ x4 ≤ 300 (2h)  

 0 ≤ x5 ≤ 400 (2i)  

where the numerical values of three of the  model parameters are given by the intervals U1  [114, 126], 

U2  [76, 84] and U23  [38, 42]. It is assumed here that uncertainties in the problem arise from imprecise 

estimation of the heat transfer coefficients for the network. The objective function is to minimize total heat 

transfer are (Eq. 2a). As reported by Ryoo and Sahinidis (1995), the optimal solution is 7,049.25 at the 

central point of the factor space, with U1 = 120, U2 = 80 and U3 = 40.  

Using a Latin hypercube design with 15 points, the proxy regression model with linear, quadratic and two-

facto interaction term was derived to predict optimum heat transfer area as a function of U1, U2 and U3. 

Statistical analysis of the regression model is given in Table 2. Note that all linear effects are statistically 

significant with negative values, which results from the inverse influence of heat transfer coefficient on heat 

transfer area. For higher-order effects, only the quadratic and interaction terms corresponding to U2 and U3 

are statistically significant. Response surfaces of optimal total area plotted against U1 and U2, U1 and U3, 

and U2 and U3 are given in Figures 3, 4 and 5. It can be clearly seen in Figure 5 that, unlike in the previous 

case study, the curvature of the response surface has a small magnitude despite being statistically 

significant. For purposes of sensitivity analysis, the quadratic and interaction terms may thus have 

negligible influence. 

Table 2: Effect of model parameters U1, U2 and U3 on optimal objective function value 

Term Estimate p-value Remark 

U1 28.8 < 0.0001 Statistically significant negative effect 

U2 67.8 < 0.0001 Statistically significant negative effect 

U3 255.7 < 0.0001 Statistically significant negative effect 

U2
2
 +1.4 0.0184 Statistically significant positive effect 

U3
2
 +10.4 < 0.0001 Statistically significant positive effect 

U2U3 +2.4 0.0008 Statistically significant positive effect 

 

 

Figure 3: Response surface of optimal Total Area plotted against U1 and U2 
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Figure 4: Response surface of optimal Total Area plotted against U1 and U3 

 

Figure 5: Response surface of optimal Total Area plotted against U2 and U3 

5. Conclusions 

This paper has proposed a comprehensive sensitivity analysis procedure for NLP models in PSE 

applications using space-filling experimental designs. The approach is based on the empirical generation 

of proxy models that predict the optimal objective function value as a function of the numerical values of 

the base model parameters. Unlike conventional sensitivity analysis based on Lagrange multipliers, this 

approach allows non-linear effects and interactions to be detected over an arbitrary range of parameter 

values. As proof of concept, two benchmark PSE case studies have been solved to illustrate this 

approach, based on Latin hypercube designs. Future work will focus on further testing of this methodology 

on a broader range of PSE problems. Aspects such as computational efficiency for different types of 

space-filling experimental designs applied to large-scale models can also be assessed. 
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