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We propose a bilevel mixed-integer nonlinear programming (MINLP) model for the optimal investment of 
biorefinery facilities considering non-cooperative farmers and biofuel consumers. Interactions among the 
supply chain players are captured through a single-leader-multiple-follower Stackelberg game under the 
generalized Nash equilibrium assumption. Given a three-echelon superstructure, the lead biofuel company in 
the middle echelon first optimizes its design and operational decisions, including facility location, sizing, and 
technology selection, material input/output and price setting. The following farmers and biofuel consumers in 
the upstream and downstream then optimize their transactions with the biofuel company to maximize their 
individual profits. Novel solution strategies are also proposed to solve the proposed bilevel MINLP efficiently. 
A county-level case study is presented to demonstrate the application of our model, as well as the 
performance of the proposed solution strategy. 

1. Introduction 

Most existing works on biofuel supply chain optimization assume that the management over the entire supply 
chain is centralized (Akgul et al., 2013). However, the entities in a biofuel supply chain can be in the charge of 
different players in practice (Yeh et al., 2014), leading to decentralized management (Bai et al., 2012). These 
players might not collaborate with each other and would act selfishly towards their own profit (Ryu et al., 
2004). Therefore, our goal is to develop a modeling and optimization framework to assist the biofuel 
company’s investment decision-making in such non-cooperative supply chains. 
There are two major challenges towards our goal. The first challenge is how to define and model the 
relationships between the multiple players in the supply chain, since a monolithic model is no longer capable 
to capture the non-cooperative behaviors of the players. The second challenge is how to efficiently solve the 
resulting optimization problem, since it would involve multi-level optimization, discrete decisions, and 
nonlinearities in the model. To overcome these challenges, we 
• propose a novel bilevel mixed-integer nonlinear programming (MINLP) model for the design and strategic 

planning in non-cooperative supply chains; 
• extend Stackelberg game and generalized Nash equilibrium to model the relationship between the players 

in multi-echelon supply chains; 
• develop efficient global optimization strategies for the bilevel MINLP using the KKT transformation and the 

successive piecewise approximation algorithm 

The rest of this paper is organized as follows. We present the problem statement in Section 2. The bilevel 
programming model formulation is presented in Section 3, followed by the solution strategies in Section 4. A 
case study is given in Section 5, with results and discussions. 

2. Problem statement 

As shown by the three-echelon superstructure in Figure 1, we consider three types of players, namely a set of 
individual farmers, one biofuel company, and a set of individual biofuel consumers. Since the biofuel company 
usually has advantages in terms of resources and technologies, we assume the biofuel company to be the 
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leader of the supply chain, while the farmers and biofuel consumers are assumed to be followers. The biofuel 
company makes facility investment decisions first given the candidate sites in the middle echelon, and will be 
in charge of all the biorefineries to be installed. Individual farmers/consumers then respond to the biofuel 
company’s decisions by optimizing their transactions with the installed biorefineries to maximize their own 
profits. This relationship between the biofuel company and the farmers/consumers can be modeled as a 
Stackelberg game with a single leader and multiple followers (Von Stackelberg et al., 2010). We also note that 
each farmer/consumer might compete their peers for certain common resources or limited quotas released by 
the biofuel company. We adopt the assumption of normalized Nash equilibrium to model the relationship 
between the followers (Facchinei and Kanzow, 2007). The optimization problems of the three types of players 
in the non-cooperative biofuel supply chain are formally stated as follows. 

  

Figure 1: Superstructure of the non-cooperative biofuel supply chain. 

2.1 Biofuel company’s problem 

The objective of the biofuel company is to maximize the total profit generated from all its biorefineries. 
Given information to the biofuel company includes: a set of candidate locations for building biorefineries; a set 
of available biomass-to-biofuel technology options; restrictions on the number of biorefineries, process 
capacity, etc.; planning horizon and project lifetime; cost data on capital investment, operations and 
maintenance (O&M), etc.; restrictions on biomass/biofuel transfer prices. 
Decision variables of the biofuel company include: selection of location, capacity and conversion technology 
for biorefineries; strategic plans on the amount of biomass to collect and the amount of biofuel to produce; 
setting of transfer prices for biomass acquisition and biofuel sales. 

2.2 Individual farmer’s problem 

The objective of each farmer is to maximize own profit from biomass exchanges. 
Given information to each farmer includes: all of the biofuel company’s decisions; available amount of biomass 
that can be offered to the biorefineries; cost data on biomass preparation, transportation from the farmer to the 
biorefineries, etc. 
Decision variable of each farmer is the amount of biomass sold to each installed biorefinery. 

2.3 Individual biofuel consumer’s problem 

The objective of each biofuel consumer is to maximize own profit from biofuel exchanges. 
Given information to each biofuel consumer includes: all of the biofuel company’s decisions; local demand and 
market price of the biofuel product; cost data for transporting biofuel from biorefineries to the consumer. 
Decision variable of the biofuel consumer is the amount of biofuel to purchase from each installed 
biorefineries. 

 
A critical feature of this decentralized game-theoretic model is that the decisions of each player in the supply 
chain are solely driven by its own economic interest. It is worth pointing out that, from the biofuel company’s 
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perspective, the price levels for biomass acquisition and biofuel sales must be carefully determined. If the 
biomass acquisition price is set too low, the farmers might refuse to sell to the biorefineries as the transaction 
would not be profitable. On the other hand, if the price is set too high, the biofuel company would pay 
unnecessary costs. The situation is similar on the biofuel consumer side. If the biofuel sales price is set too 
high, the biofuel consumer might be reluctant to purchase from the biorefineries due to the negative profit 
margin. On the other hand, if the price is set too low, the biofuel company is losing potential revenue. 

3. Model formulation 

According to the problem statement above, this is a single-leader-multiple-followers Stackelberg game with 
generalized Nash equilibrium assumption between the followers. We propose the following bilevel MINLP to 
capture the non-cooperative behaviours of the players in the supply chain. 

{ }
( ) ( ) ( ) ( ){ }{ }0,1

max  , , 0, arg max , , , 0
n v n

v v v

x y
F x y G x y y f x y g x y y−

∈ℜ ∪ ∈ℜ
≤ = ≤          (1) 

 
The lead biofuel company’s decisions are denoted by vector x, which can involve both discrete variables (e.g. 
those for facility location and technology selection) and continuous variables (e.g., those for production 
planning and transfer prices). Let the followers (namely, farmers and biofuel consumers) be indexed by v. The 
decisions of follower v are denoted by vy . Vector vy−  stands for the decisions taken by the followers other 
than v. Vector y is a collection of the decisions of all the followers at Nash equilibria, which involves only 
continuous variables (e.g., those for material exchanges). In the lower-level problems, every follower strives to 
maximize its own benefit function subject to its own constraints, given the leader’s decisions x and other 
players’ decisions vy− . In the upper-level problem, the leader’s objective function and constraints are 
influenced not only by its own decisions x, but also by the equilibrium decisions of all the followers y. Without 
loss of generality, the lower-level problems are linear programs (LPs) and the upper-level problem is a 
nonconvex MINLP. The nonlinearities result from the concave and bilinear terms in the biofuel company’s 
objective function. The concave terms captures the economies of scale in the capital cost of building 
biorefineries. The bilinear terms are the transaction payments equal to the product of transfer prices and 
amount of biomass/biofuel transfer. 

4. Solution strategiess 

4.1 KKT-condition-based reformulation 

The above bilevel MINLP model cannot be directly handled by any off-the-shelf mathematical programming 
solvers. Therefore, we continue to reformulate the bilevel problem into a single-level MINLP. This is 
accomplished by replacing the lower level LP problems with their KKT conditions. Every follower v’s 
optimization problem is replaced by four sets of constraints, namely stationarity, primal feasibility, dual 
feasibility, and complementary slackness. The first three sets of constraints are linear, and the bilinear terms 
in the complementary slackness constraints can be linearized by introducing a set of binary variables. KKT-
condition-based reformulation is a standard approach in bilevel programming and more details can be found in 
the book by Bard (1998). Since the lower level problems are LPs, the KKT conditions are sufficient and 
necessary. Therefore, the resulting single-level MINLP problem is equivalent to the original bilevel MINLP. 

4.2 Successive piecewise approximation algorithm 

Although off-the-shelf global optimizers can be used to solve the above nonconvex single-level MINLP 
problem, their computational performance is somewhat lacking. To further facilitate the solution of the above 
nonconvex MINLP problem, we introduce the successive piecewise approximation algorithm in this section. 
The algorithm takes advantage of the powerful MILP solvers (e.g., CPLEX) and returns the global optimal 
solution to the nonconvex MINLP problem by iteratively solving a sequence of MILP subproblems. Compared 
with its predecessor (You and Grossmann, 2011), the proposed algorithm is improved in the following two 
aspects. First, a new type of piecewise linear approximations based on the SOS1 variables is employed to 
formulate the MILP subproblems. Second, bivariate partitioning for bilinear terms is used. 
An important step of the successive piecewise approximation algorithm is to iteratively construct convex 
relaxation problems (MILP subproblems) based on the piecewise linear approximations for the nonconvex 
terms, namely the concave and bilinear terms in this model. The piecewise linear approximations are derived 
based on the SOS1 formulation summarized in the work by Padberg (2000). By definition, at most one 
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variable within an SOS1 can have a non-zero value. A number of MILP solvers allow the use of SOS1 
variables (e.g., CPLEX) and have certain internal routines for solving the SOS1 formulations efficiently (Hasan 
and Karimi, 2010). We note that grid partitioning has a great influence on approximation error (Garcia and 
You, 2015). Therefore, we propose a successive piecewise approximation algorithm which automatically 
determines the grid propagation and effectively converge within finite iterations. The procedure of the 
algorithm is shown in Figure 2, which is based on the work by Bergamini et al. (2008). 

 

Figure 2. Flowchart of the successive piecewise approximation algorithm 

5. Case study 

Biomass-derived transportation fuels are considered a promising solution to our heavy dependence on fossil 
fuels and the related issues on climate change, waste pollution, energy security, and resource depletion (Yue 
et al., 2014). A variety of biomass can be used as feedstocks, including agricultural crops, forest residues, 
municipal wastes, algae biomass (Gong and You, 2014), etc. A spectrum of biofuels can be produced, 
including methanol, ethanol, biodiesel, drop-in hydrocarbon biofuels, etc. Besides, value-added biochemical 
can be co-produced to generate extra revenue (Gong and You, 2015). A number of biomass-to-biofuel 
conversion technologies have been developed and optimized (Gebreslassie et al, 2013), in terms of both 
economic and environmental performances (Wang et al., 2013). There are several contributions to the issues 
on sustainability (Yue et al., 2013), risk management (Tong et al., 2014), and collaboration in biofuel supply 
chains (Yue and You, 2014). 
To illustrate the application, we present a county-level case study on the design and strategic planning of a 
potential cellulosic biomass-to-ethanol supply chain in the state of Illinois. The state of Illinois comprises 102 
counties. We identify 10 individual farmers, 5 candidate sites for building biorefineries, and 10 individual 
consumers assuming that they are located at the centers of the counties (You and Wang, 2011). We consider 
corn stover as the biomass feedstock and ethanol as the biofuel product. The spatial distribution of corn stover 
availability is shown in Figure 3a. The population density is shown in Figure 3b, and we assume that the 
biofuel demand at each consumer is proportional to the population of that county (You et al., 2012). There are 
2 biomass-to-biofuel technology options available for choice, namely the biochemical and thermochemical 
pathways (Sharma and Romagnoli, 2011). The biochemical conversion process is based on dilute-acid 
pretreatment and enzymatic hydrolysis processes, and the thermochemical conversion process involves 
indirect gasification and mixed alcohol synthesis. The biomass and biofuel are assumed to be shipped by 
truck. Considering the length of the paper, the detailed input data and mathematical model are not included 
but available upon request.  
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The optimal design that maximizes the biofuel company’s profit in the non-cooperative supply chain is 
presented in Figure 3. The optimal design decisions made by the biofuel company are to build two 
biorefineries in the Champaign County and LaSalle County, respectively. The biorefinery in Champaign 
County has a capacity of 130 million gallons/year with the thermochemical technology. It receives corn stover 
from the farmers in Champaign, Iroquois, McLean, and Vermilion. The biomass acquisition cost is set at 
$69.35/dry ton. It sells the produced fuel ethanol to the consumers in Champaign, Cook, Madison, St. Clair, 
and Will. The biofuel sales price is set at $2.39/gallon. The biorefinery in LaSalle County has a capacity of 139 
MM gallons/year with the thermochemical technology. It receives corn stover from the farmers in Bureau, 
LaSalle, Lee, and Livingstone. The biomass transfer price is set at $65.14/dry ton. It sells the produced fuel 
ethanol to the consumers in Cook, Dupage, Kane, Lake, McHenry, and Winnebago. The biofuel transfer price 
is set at $2.42/gallon. The total profit generated from the two biorefineries is $126.68 million. The adjusted 
profits of the farmers range from $0 to $11.58 million. The adjusted profits of the consumers range from $0 to 
$2.04 million. The total profit of the entire supply chain is equal to $158.00 million. We can see that the 
biorefinery investor gains 80% of the supply chain profit by leveraging its leader position. 

 
                                                                  (a)                                                                                 (b) 
Figure 3. Optimal supply chain structure: (a) transportation of biomass feedstock from farmers to biorefineries 
with biomass availability as the map background; (b) transportation of biofuel product from biorefineries to 
consumers with population density as the map background. 

 
At this optimal solution, the cost for producing one gallon of fuel ethanol is $1.91. Capital investment accounts 
for the largest portion of the fuel ethanol cost, equalling 41%. The second largest component is the biomass 
harvesting cost, which accounts for 29% of the fuel ethanol cost. The fixed and variable O&M costs together 
share 8% of the fuel ethanol cost. The transportation of biomass also accounts for a significant portion (18%) 
of the fuel ethanol cost, because of the lower energy density of biomass. Since the energy density of fuel 
ethanol is significantly improved, the transportation cost of biofuel accounts for 4% of the fuel ethanol cost. 
To compare the computational performance of the proposed successive piecewise approximation algorithm 
with that of the direct solution using state-of-the-art global optimizer, BARON 12, we discuss the model 
statistics and computational results of both methods below. The single-level MINLP problem involves 10 
discrete variables, 285 continuous variables, and 362 constraints. We solve it directly using BARON 12 and it 
fail to converge after 20 hours. The relative gap at the time when it was terminated is 67.9%. In contrast, the 
successive piecewise approximation algorithm converges to the global optimal solution in about 8.6 hours. 
The relative gap is less than 0.1%. The algorithm takes a total of 7 iterations. As the algorithm proceeds, the 
numbers of variables and constraints increase. The MILP piecewise approximation in the first iteration 
involves 140 discrete variables, 445 continuous and SOS1 variables, and 712 constraints, while the MILP 
piecewise approximation in the 7th iteration involves 140 discrete variables, 875 continuous and SOS1 
variables, and 867 constraints. Therefore, it is shown that the successive piecewise approximation algorithm is 
much more efficient in solving the reformulated MINLP problem considered in this work. 

6. Conclusions 

A novel game-theoretic modelling and optimization framework was proposed for the design and strategic 
planning of non-cooperative biofuel supply chains. We formulated a bilevel MINLP problem to model the 
leader-follower relationship and competition among the followers under the assumption of the single-leader-
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multiple-follower Stackelberg game and the generalized Nash equilibrium. The upper level problem was a 
nonconvex MINLP, and the lower level problems are LPs. Applications of the proposed framework were 
demonstrated via a case study. We observed that the biofuel company gains most of the profit of the entire 
supply chain by leveraging the leader position. On the other hand, the computational experiments showed that 
the proposed solution strategy could improve the solution efficiency by at least an order of magnitude. 
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