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Integrated biorefineries are processing facilities which convert biomass into value-added fuels and chemicals.  
From a commercial perspective, recent lignocellulosic biorefinerinig ventures have been fraught with 
technological and market uncertainties often leading to considerable financial losses for value chain actors. 
The objective of this work is to develop a comprehensive optimization framework for sustainable design of 
biorefineries. A structural approach is utilized for planning the production capacity, simulation of the process in 
detail, and optimizing the operating condition of the plant. A stochastic linear programming model is developed 
for strategic optimization under market uncertainty. Results from strategic model are sent to the lower level of 
optimization model in which operating conditions of the plant are optimized through an iterative process 
simulation and stochastic optimization. To demonstrate the effectiveness of the proposed approach, a 
hypothetical lignocellulosic biorefinery is considered as a case study. The results prove the efficiency of the 
proposed approach, and provide a quantitative analysis to determine the optimal design in the face of 
uncertainty. 

1. Introduction 

In recent years there has been a marked surge in the search for alternative sources of energy that wean the 
world off of dependence on fossil fuels and reduce the carbon foot-print. As the world has recognized the 
importance of diversifying its energy resource portfolio away from fossil resources and more towards 
renewable resources such as biomass, there arises a need for developing strategies which can design 
renewable sustainable value chains that can be scaled up efficiently and provide tangible net environmental 
benefits from energy utilization. After a boom in U.S. corn-based ethanol in the early part of the 21st century, 
the interest has gradually shifted towards more viable sources for production of biofuels and biochemicals. 
Second generation biofuels are examples of such fuels that are extremely attractive owing to the fact that the 
raw materials can be composed completely of “left-over” wastes of food crops and forest harvests that do not 
interfere with the human food chain and the natural ecosystem. It also can provide new income and 
employment opportunities in rural areas.  
Several contributions have appeared over the last few years in order to manage the complexity of decision 
making process for designing profitable renewable energy production systems. Many of the proposed studies 
in the literature such as the work by Kazi et al. (2010) use deterministic modelling approaches which assume 
that all the parameters are known in advance. However, common to early stages of process design is the lack 
of certain information that will introduce variability into the decision-making problem (Sahinidis 2004). 
In this study the development and implementation of a multi-layered decision support tool is presented that 
can be utilized by energy entrepreneurs, resource and technology investors, and value chain actors in the 
renewable energy industry to carefully design and optimize the business value of their energy endeavours in 
the face of uncertainty. A distributed, systematic approach is applied which is composed of different layers 
including strategic, tactical, and operational tasks. To demonstrate the effectiveness of the proposed 
methodology, a hypothetical case study of a multiproduct lignocellulosic biorefinery based on sugar 
conversion platform is utilized. 
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2. Design of decision support framework 

Linear programming (LP) models are suggested for the purpose of strategic planning. To overcome the 
mismatch between nonlinear process mechanisms and LP-based strategic optimization, a decomposition 
strategy is proposed that combines net present value (NPV) optimization for long term planning with rigorous 
non-linear process simulation and process-level optimization. In the first stage (strategic model) different 
scenarios are developed based on stochastic forecasts for uncertain market parameters including price and 
demand of bioproducts. The process is formulated as a stochastic mixed integer linear programming (MILP) 
model which incorporates stepwise capacity expansion and financial risk minimization. The output of the 
model includes optimal design of production capacity of the plant for the planning horizon by maximizing the 
expected net present value (NPV). The results are then fed to the second stage of the optimization algorithm 
(operational level model). This stage, which optimizes the operating conditions of the plant, consists of three 
main steps including simulation of the process in the simulation software (nonlinear modelling), identification of 
critical sources of uncertainties through global sensitivity analysis affecting selected performance criteria, and 
employing stochastic optimization methodologies to maximize the annual cash flow of the plant. Figure1 
shows a general schematic structure of the proposed iterative decision support strategy. The iterative process 
is used to obtain a piecewise linear approximation of the nonlinear reaction- and thermo-dynamics; the 
nonlinear dynamics are simulated and their linear approximations are used during strategic planning and 
optimization. Each component of the proposed algorithm is described in more detail in section 3. 
 

 
Figure 1: Framework for operational level optimization under uncertainty 

3. Framework details 

In this section each component of the proposed framework (Figure 1) is described in some detail. While the 
description of the framework is based on the design of the case study presented in Section 4, each 
component, and the framework, can readily be adapted to other energy value chains. Due to space limitations, 
all model equations used for optimization cannot be listed. A description of model constraints is provided for 
each layer of the proposed optimization model. 

3.1 Strategic model 

Strategic model is formulated as a mixed integer based linear program (MILP) with a 14-year planning horizon 
and bi-annual time steps. The mathematical formulation is broken into sub-models for ease of description 
which include a production model, financial model and risk management model. In the production model, all 
major process systems are represented as linear black boxes. Major equations include linearly approximated 
mass and energy balances for each node in the value chain. Production yields for each section of the plant 
are obtained from literature and used as inputs into the strategic planning model, and the expected net 
present value (objective function) of the biorefinery will be maximized by considering the optimization of 
production capacity (decision variable). 
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Financial model is broken into two salient aspects including market model and calculation of capital costs, 
operating expenses and revenues. In market model, price and demand evolution of bioproducts are described 
by considering that crude oil is represented as a stochastic input following Geometric Brownian Motion (GBM) 
and assuming that market of bioproducts are impacted primarily by the price of crude oil.  Binomial lattice 
generation approach is utilized to discretize the continuous stochastic model of oil price yielding Markov chain 
decision tree. Each node in the decision tree is represented as a price scenario for crude oil (and 
consequently for bioproduct markets). Calculation of the price and the demand of products (ethanol and 
succinic acid) is derived from the hypothetical market model proposed by Sharma et al. (2013). Additionally, to 
reflect and control the variability of performances associated with each specific scenario, a risk metric based 
on the downside risk management approach is utilized.  

3.2 Operational level model 

Simulation of the technological configuration was carried out using Aspen Plus with the optimal capacity plan 
obtained from strategic optimization. By simulating the entire model in Aspen Plus, the implicit correlations 
between upstream and downstream stages of the process are taken into consideration. Additionally, complex 
kinetics of bio-reactions is incorporated in the simulation model based on the iterative dynamic data exchange 
between Aspen Plus and developed kinetic models in Matlab (Geraili et al., 2014b). Then, the Sobol global 
sensitivity method (Sobol, 2001), a variance–based Monte-Carlo technique, is used to test the sensitivity of 
the parameters. The global sensitivity analysis focuses on the pattern of change in model output due to 
change in model input parameters over a potential variation range of parameter value rather than a single 
parameter value. Once sensitivity measures have identified the significant sources of uncertainties in the 
process, a stochastic optimization algorithm based on Monte-Carlo simulation is used to find out the optimal 
operating conditions with the aim of maximizing the annual cash flow in the plant (objective function). Since 
the sampling is global rather than local thereby reducing the tendency to be entrapped in a local minimum and 
avoiding a dependency on an assumed set of initial conditions(Gallagher and Sambridge, 1994). The first step 
in the optimization is performed by sampling from operating conditions which is formed by a matrix of 
operating variables. Then a Monte-Carlo simulation is performed using sampling from the important uncertain 
parameters (identified in sensitivity analysis) space to estimate the uncertainty of model outputs used in the 
objective function calculation. The results from Monte-Carlo simulation are then evaluated based on statistical 
techniques (95% confidence interval) in order to identify the optimal operating scenario.  Figure 2 represents 
the proposed strategy for the operational level optimization. 
 

Figure 2: Operational level optimization strategy 

4. Application case study: Lignocellulosic biorefinery 

In order to demonstrate the utility of the proposed framework, the aforementioned decision support system is 
applied to a hypothetical biorefinery that utilizes lignocellulosic feedstock(s) to produce biobased fuels and 
chemicals. The lignocellulosic biorefinery used in this study is a multiproduct plant that uses a fermentation-
based sugar conversion platform, with 3 products: cellulosic ethanol, biosuccinic acid, and bioelectricity. 
Switchgrass serves as the selected feedstock for the biorefining process. The production chain comprises of 6 
major systems: feedstock pretreatment, sugar hydrolysis, sugar fermentation, product purification, heat and 
power generation, and wastewater treatment. The systems superstructure is shown in Figure 3. 
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Figure 3. Block diagram for the multiproduct biorefinery plant 
 
Technological configurations along with capital and operational cost, yield, and energy data for bioethanol 
production are obtained from Humbird et al. (2011) and Kazi et al. (2010). For succinic acid production, 
operational and economic data are obtained from Vlysidis et al. (2011); these are used as starting estimates to 
begin the iterative optimization process. 

5. Results and discussion 

In this section, the results for optimal strategic and operational level decisions of the multiproduct biorefinery 
are discussed. The decision variables considered in the framework are composed of the optimal capacity plan 
for long term production in biorefinery (strategic optimization), optimal temperature and enzyme amount for 
enzymatic hydrolysis (operational level optimization), and optimal allocation of pretreated biomass for 
production of final products (operational level optimization). The plant life time considered in this study is 14 y 
with an annual discount rate of 10%.   
Results of the MILP model for the strategic optimization which is implemented in the modeling system GAMS 
and solved with a CPLEX linear solver are shown in Table 1. Two different cases are considered to illustrate 
the impact of the proposed risk management procedure. In stochastic case study, the variability in the market 
is taken into consideration by stochastic formulation based on scenario generation. The other case study (Risk 
managed case) is an extension of the stochastic model which incorporates financial risk through downside risk 
management strategy.As expected, the results from multi-objective optimization model reveal that there is a 
conflict between the two objectives, economic performance and financial risk.  As shown in Table 1, a 
reduction of the downside risk can be attained in the expense of a reduction in the expected net present value 
(economic objective) of the process. Furthermore, results for these two cases show that minimization of 
downside risk leads to allocation of more sugar to succinic acid production and reduction in expected biomass 
processing capacity. 
 

Table 1: Comparison of feedstock and production capacities before and after risk management 
 

Scenario Expected NPV 
($MM) 

Downside 
risk 

Feedstock Capacity  
(1,000 t/y) 

Sugar allocation ratio 
(for ethanol 
production) 

Stochastic case 62.8 1 0% 218 0.62 

Risk managed case 60.0 3 % 152 0.59 

Kinetic parameters in simultaneous saccharification and co-fermentation of ethanol production, hydrolysis and 
fermentation of sugars for succinic acid production are considered as potential uncertainty sources in 
operational level model (technological risks) and Global sensitivity analysis is performed to assess the relative 
sensitivity of these model parameters. It is found that some parameters are rather insensitive. If the values of 
these insensitive parameters are fixed, a simplified model which reduces the complexity of the search space is 
obtained. Calculated sensitivity indices for model input parameters are shown in Figure 4. It is found that 20 of 
the kinetic parameters are significantly affecting the uncertainty on annual cash flow of the process. Due to 
space limitation, the description of the kinetic parameters is not provided here. A complete list of all the kinetic 
parameters and their description can be found in our previously published paper (Geraili et al., 2014a).  
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Figure 4. First order sensitivity indices of annual cash flow 
 
Based on our previous studies, hydrolysis temperature, sugar allocation, and enzyme loading are selected as 
important operating variables to be optimized (Geraili et al., 2014b). Then a sample of selected operating 
variables and also a sample for the shortlist of uncertain parameters were created to perform a Monte Carlo 
stochastic optimization. Table 2 represents the results of scenarios from Monte Carlo simulation for the 
samples that had the best performance based on the mean value and 95% confidence interval of annual cash 
flow (objective function). Optimal values of the decision variables obtained from Monte Carlo stochastic 
optimization model are shown in Table 3. 

 
Table 2. Monte Carlo simulation results for annual cash flow maximization  

Scenario Mean 95 % Confidence 
interval) 

% saving  
(95% confidence interval) 

Base case 8,700 120 -- 

Sample 14 9,570 83 30.8 

Sample 47 
 

9,153 104.3 13.1 

 
Table 3. Base case and optimal operating conditions  
Scenario Hydrolysis Temperature

(°C) 
Sugar allocation 

(ethanol) 
Enzyme loading ratio 

(g enzyme/ kg Cellulose) 

Base case 33.45 0.44 25 
Optimal 39.3 0.37 13.1 

Iterative results of the hybrid optimization methodology are presented in Table 4 which shows that in two 
iterations the model is converged. Initial process yields are obtained from literature (step1); then these yields 
are utilized in strategic model (for the scenario that includes financial risk management strategy) to calculate 
the production capacity plan (step 2); the optimal values for the capacity are passed to the process level 
simulation and optimization to find the optimal process conditions and calculate the process yields based on 
the results of simulation (step3). These calculated yields are compared with the initial values used in the 
strategic model to check the convergence. Since the difference between calculated yields and initial yield 
values is greater than the threshold, this hybrid optimization needs to be carried out again based on the new 
yield values.   
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Table 4: Iteration results in hybrid optimization strategy 

Parameters and Variables 
Iteration1 Iteration2 

Step 1 Step 2 Step 3 Step 1 Step 2 

 
Capacity 
Constraints 

Feedstock (1,000 t/yr) -- 222.2 -- 218.0 -- 

Ethanol (MM gal/yr) -- 15.3 -- 11.4 -- 
Succinic Acid 
 (1,000 t/y) -- 6.0 -- 5.9 -- 

 
Yield 
Parameters 

Sugar (kg/kg) 0.87 -- 0.65 -- 0.65 
Ethanol Fermentation 0.85 -- 0.98 -- 0.98 
Succinic Acid 
Fermentation 0.25 -- 0.45 -- 0.45 

Ethanol Purification 0.99 -- 0.98 -- 0.98 
Succinic Acid 
Purification 0.78 -- 0.78 -- 0.78 

6. Conclusions 

In this study a new hybrid optimization methodology to determine the optimal production capacity plan and 
operating conditions for an integrated multi-product biorefinery in the face of stochastic inputs and outputs was 
presented. The optimization problem was solved in a two-level approach, first stochastic linear model was 
developed to optimize production capacity for the desired planning horizon and then process simulation 
coupled with a stochastic optimization algorithm was employed to optimize the operating condition of the plant.  
Monte-Carlo based simulation and global sensitivity analysis were utilized to identify the most critical 
parameters and optimize the operating conditions of the plant. Incorporating metrics for mitigation of financial 
risk in the framework (strategic model) shows that there are two important factors that influence the 
performance of the model in the face of market uncertainty including production capacity and allocation of 
pretreated biomass between ethanol and succinic acid production.  The global sensitivity analysis quantifies 
the uncertainty in the annual cash flow due to technological risks and the iterative results from hybrid 
optimization strategy reveal that there is a difference between calculated production yields and the ones which 
are suggested in literature. This is attributed to the nonlinear modeling and optimization strategies used in the 
optimization framework to impart a greater degree of realism to the actual representation of the biorefinery. 
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