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The article presents mathematical description of gas-solid flow reactor and its solution with C++ BzzMath 
library. This work is illustrating the way of developing the control system of flow reactor with PI/PID controller. 
Quasi linear regions of output depend on input and disturbance signals were found and several conventional 
and modern tuning techniques were applied to provide the robustness and performance trade-offs. The 
system stability was checked for robustness in different regimes (quasi linear and non-linear). 

1. Introduction 

Nowadays heterogeneous catalysis rules are used in almost industrial processes, especially in the form of 
heterogeneous gas-solid flow reactors. This equipment has been deeply investigated in chemical engineering 
history and several modelling strategies have been developed (Manenti et al., 2013). However, these reactors 
are typically managed by conventional (Proportional-Integral-Derivative, PID) controls and the definition of a 
smart, effective and robust methodology to tune the control loops may still be a challenge, especially when 
very exothermic reactions are carried out in these reactors. PID based control systems are those that are 
commonly employed in the industrial practice because, if they are properly tuned, they can ensure both good 
performances in servomechanism and regulation problems and the controlled system stability. However, the 
definition of a proper set of tuning rules, based on a balance between the need for performance and that for 
stability, is nontrivial. A novel robust PID tuning method, which accounts for both control performance and 
control stability, has been described elsewhere (Mikhalevich et al., 2015). The goal of the present work is to 
apply such a technique to tune the PID control system of a catalytic flow reactor (Figure 1). There used 
notifications: ρi(G) is the mass concentration of the i-th component in the reactor, Acs is the reactor vessel 
cross-sectional area, z is the space position in the axial reactor length, Q is the volumetric flowrate inside the 
reactor, T is the temperature in the reactor, Aexc is the reactor heat exchange area, Tc is the coolant 
temperature, P is the pressure in the reactor, zF is the maximum value of z, QIN is the inlet volumetric flowrate, 
TIN is the temperature of the reactor feed, PIN is the pressure of the reactor feed, ρi

(G,IN) is the mass 
concentration of the i-th component in the reactor feed. 

 

Figure 1: Layout of the catalytic PFR 
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2. Dynamic model of the plug flow reactor 

The plug flow (PFR) reactor, shown in Figure 1, is modeled by means of a first principles approach using the 
following assumptions to simplify the modeling issues. The reacting mixture is supposed to behave as a 
perfect gas and its thermodynamic properties (constant pressure and constant volume specific heat, enthalpy 
of reaction and so on) are considered constant with temperature. Moreover, the gas transport properties (axial 
dispersion and thermal conductivity, viscosity, global heat transfer coefficient and so on) are assumed to be 
constant with both temperature and composition. All these assumptions are reasonable for a wide number of 
different cases. The additional assumptions, introduced for the catalytic phase, include isothermal catalyst and 
no diffusive limitations inside the catalyst (the efficiency factor equals one). Finally, the reactor temperature is 
assumed to be controlled with a phase changing fluid, thus there is no variation in the coolant temperature 
profile with respect to the space. 
By exploiting all the reported assumptions and neglecting the gas – catalytic phase gradients, the reactor 
model is constituted by the component material balances, the energy balance and two additional equations 
used to predict the pressure losses and the volumetric flow variation. In the end, a pseudo homogeneous 
model is developed. The material balance for the i-th component is described in Eq(1) while the energy 
balance can be found in Eq(2): 
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where t  is the time, ε  is the catalytic bed void fraction, eff
iD  is the effective axial dispersion of the i-th 

component, iPM  is the molecular mass of the i-th component, RN  is the number of chemical reactions, ijν  is 
the stoichiometric coefficient of the i-th component in the j-th reaction, ( )r

jR  is the rate of the j-th reaction, iCv  
is the i-th component constant volume specific heat inside the reactor, cρ is the catalyst intrinsic density, cCp  
is the catalyst constant pressure specific heat, iCp is the i-th component constant pressure specific heat inside 
the reactor, 

jRHΔ  is the enthalpy of reaction for the j-th reaction, effk  is the effective axial thermal conductivity, 
U  is the global heat transfer coefficient, (P)

iρ  is the density of the i-th pure component. 
A Langmuir-Hinshelwood rate equation is chosen (its general functional structure is shown in Eq(3)). Such a 
rate equation is chosen since the majority of the catalytic reaction kinetics are reported under this formalism in 
literature: 
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In Eq. (3), 0
jk  is the pre-exponential factor of the j-th reaction rate constant, jEa  is the activation energy of the 

j-th reaction, CN  is the number of components in the reacting mixture, iP  is the partial pressure of the i-th 

component inside the reactor, jiγ  is the reaction order of the i-th component in the j-th reaction, ,0eq
jk  is the 

pseudo pre-exponential factor of the equilibrium constant of the i-th component in the j-th reaction, eq
jiEa  is the 

pseudo activation energy of the equilibrium constant of the i-th component in the j-th reaction, RT  is the 
temperature T  multiplied by the universal gas constant. 
The mathematical expression that can be used to connect the pressure losses to the reactor operating 
conditions should be derived from the momentum balance. Nevertheless, since the pressure dynamics are 
much faster than the material/thermal dynamics and of little interest, the dynamic momentum balance can be 
replaced with the simpler Ergun equation (this equation comes from the momentum balance in steady-state 
conditions). Ergun equation is stated as follows: 

1526



( )
( )

3
( )

1

1 1.75 150 1
C

G
mix

N
G c

c i
i

P G G
z DPDP

ε με
ε ρ

=

  ∂ −= − + −   ∂    
 

(4) 

where G  is the mass flowrate per unit cross-sectional area inside the reactor, cDP  is the catalyst particles 

diameter, ( )G
mixμ  is the reacting mixture viscosity. 

Finally, a mathematical formula for the evaluation of the volumetric flow is needed. In this model, a simplified 
expression (Eq(5)), which comes from the perfect gases equation of state, is used. 
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where mixPM  is the molecular mass of the reacting mixture inside the reactor, IN
mixPM  is the molecular mass of 

the inlet mixture. 
All the model equations have been reported and described but the PDEs require proper initial and boundary 
conditions to be solved. The initial conditions for Eq. (1-2) consist of the spatial profiles of the state variables 
at a certain initial time (see Eq(6)) while no initial condition is required for Eq(4). The boundary conditions for 
Eq. (1-2) have to be imposed both in 0z =  and in Fz z=  and consist of a set of material/energy balances on 

the reactor inlet interface (Eq(7)) and a zero gradient condition (Eq(8)), respectively. Once again, Eq(4) is an 
exception because only the boundary condition in 0z = , which comes from a momentum balance on the 
reactor inlet interface, must be added (Eq(7)). 
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In Eq(6-8), 0t  is the initial value of t , ( ,0)G
iρ is the mass concentration of the i-th component inside the reactor 

at 0t t= , 0T  is temperature inside the reactor at 0t t= , IN
iCp  is the i-th component constant pressure specific 

heat in the reactor feed. 
All the equations and the proper initial/boundary conditions belonging to the reactor model have been shown 
but these equations must be solved with a suitable numerical method, thus some information on the model 
solution approach must be added. Here, the finite difference method, based on backward derivatives 
approximation, is employed. In detail, all the reported equations are discretized in space in order to reduce the 
PDAE system to an initial value DAE system. Then, the DAE system is solved by the BzzMath DAE integrator 
(Buzzi-Ferraris and Manenti, 2012), which is based on improved Gear multi-value methods. In order to ensure 
an elevated efficiency in the discretized PFR model solution, it is mandatory to exploit the system Jacobian 
structure (Figure 2). The BzzMath DAE integrator can be provided with the Jacobian matrix sparsity pattern, 
thus it is suitable for this application. 
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Figure 2: Sparsity pattern of the Jacobian of the discretized PFR reactor model 

3. Development and tuning of the PFR control system 

The proportional-integral (PI) and proportional-integral-derivative (PID) controllers are widely used in industry 
(Visioli, 2012). This type of control is the most popular because a wide class of industrial processes can be in 
control of it. According to this remarks, the authors have decided to use the control system presented in Figure 
3. 
Nowadays there are a lot of techniques (Aström and Hägglund, 2005) for the optimal calculation of the 
parameters of PI/PID controllers and ones modifications (Shamsuzzoha, Al-Mutairi, 2011). Each of them has 
advantages and disadvantages. Therefore, the authors have chosen several modern and conventional PI/PID 
tuning methods and have applied them to the proposed control system in and compare their performance. 
An identification procedure must be completed before PID tuning can be obtained. For this purpose the step 
response of the PFR model is computed and, subsequently, used to generate a simplified linearized model, 
based on a transfer function representation. Note that the identification is performed by using eT  as the only 

manipulated variable and outT  as the only controlled variable of the PFR. The transfer function resulting from 

the identification is presented in Eq(9). 

 

Figure 3: PFR control system where spT  is the PFR hot spot temperature set-point, inT  is the temperature of 

the PFR inlet flowrate, outT  is the PFR hot spot temperature 

0.477( )
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PFR s
s

=
+

 (9) 

 
The transfer function of PFR is true for linear bounds shown on Figure 4. These bounds required for the 
functionality of the control system must be coupled with the physical constraints. It must be ensured that  eT  < 

525 K and inT  ϵ [425;485] K (according to the technical requirement). After combining theoretical and practical 

bounds, the final allowed intervals for eT  and inT  are: eT ϵ [395;525) and inT  ϵ [450;485]. 

Notice that the PI/PID controller in the proposed control system must consider the saturation for the control 
signal according to the eT  bounds, described above. As an alternative, we may suppose that our reactor is an 

interval system and, subsequently, tune the PI/PID controller as for an interval system (i.e., each parameter of 
the transfer function is not constant). In this latter option, we need to check the behavior of the control system 
in the case of nonlinear response of the target process. 
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Figure 4: Identification of the quasi-linear operation regions 

In order to tune the PI/PID controller in proposed control system, the authors have used several methods. 
Magnitude Optimum (MO) (Aström and Hägglund, 2005) provides the maximum bandwidth of system. 
Mikhalevich et. al. (Mikhalevich et al., 2015) provides minimal overshoot for desired phase margin and 
crossover frequency. Good Gain Method (Haugen, 2012) is an alternative of Ziegler-Nichols (Ziegler and 
Nichols, 1942) that provides better stability robustness with Ziegler-Nichols method.. Also, several control 
quality and robustness indexes have been evaluated: maximum sensitivity (Ms), phase margin (φm), and 
settling time (ts). 
The results of the servomechanism and disturbance attenuation, in the region where the reactor response is 
almost linear, are presented in Figure 5. The control systems tuned by means of the Good gain method is not 
shown because the PFR becomes unstable. The control system performance measures and robustness 
indices are shown in Table 1. 
According to Figure 4, the PFR reactor is a nonlinear system. Therefore, we need to check the performance of 
the control system, tuned with different methods, also based on a servomechanism problem performed in the 
region where the reactor response is nonlinear. The results of this servomechanism problem are presented in 
Figure 6. According to Figures 5, Figure 6 and Table 1, the most appropriate control system for a PFR 
appears to be a PID, tuned by the Mikhalevich et. al. method. It provides minimum overshoot and settling time 
along with reasonably large robust indices. The proposed PID controller also allows both to exclude the 
saturation block from the control system and to control the reactor over the entire range of feasible operation. 

Table 1. Control system performance and robustness when different tuning methods are employed 

Method Settling time, s Maximum sensitivity phase margin, ° 
MO-PI 179 1 78.49 

MO-PID 175 0.67 105.3 
Mikhalevich et. al. method 165 0.81 104 

  

Figure 5: PFR transient in a servomechanism and disturbance attenuation problem (the reactor response is 
quasi-linear) 

1529



 

Figure 6: PFR transient in a servomechanism problem (the reactor response is nonlinear) 

4. Conclusions 

This paper has outlined a mathematical model of a catalytic flow reactor, made of partial differential equations, 
algebraic equations and boundary conditions. Then, the PFR dynamic behavior has been approximated with a 
first order transfer function (FOTF) without delay time and the regions of linear dynamic response have been 
identified as a function of the manipulated variable and the external perturbation. Despite the widespread 
belief that the best controller for chemical plants is a PI, both PI and PID controllers have been tested. Their 
tuning procedures have been addressed with several methods. The performances of the PI/PID controllers, all 
tuned with different strategies, have been compared on several servomechanism and disturbance attenuation 
problems in the region where the PFR exhibits both a quasi-linear and a nonlinear behavior. It results that PID 
appears superior to PI, in contrast to the standard beliefs, and the Mikhalevich et al. (2015) method ensures 
the best performances. Finally, a modern PID tuning method has been used to develop a reliable and efficient 
control system for PFR reactors. 
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