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This article aims to study the heat transfer in the pyrolysis of oil shale in a diluted and concurrent moving bed
reactor. It was developed a numerical solution for a non-linear heat transfer (convective and radiant) model
through the orthogonal collocation method. In this method the particle interior temperature profile is
approximated by an orthogonal polynomial of an arbitrary degree that is replaced into the model equations
generating a system of ordinary differential equations. The results obtained were compared with an existing
analytical solution of the quasi-linearized heat transfer model. The comparison shown an excellent agreement
in the range of the parameters analyzed.
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1. Introduction

Brazil owns the second largest reserves of oil shale in the world. The main oil shale deposits are located less
than 100 meters deep and are distributed in layers of variable thickness and distinct levels of kerogen.
Generally, the content of organic matter in the deposits of oil shale ranges between 5% and 25%, as in the
Irati formation of oil shale at Sdo Mateus do Sul — PR, Brazil, which has a 9% average in oil. Under this
perspective of research, aiming new sustainable ways of composing the global energy matrix, the
decomposition of oil shale and gas has been studied in various aspects, and largely in the field of Chemical
Engineering. Because it is a non-renewable resource and generates hazardous products for to the
environment, it has been largely invested in research in order to achieve technologies combining energy
efficiency with environmental sustainability. In this way, other works have developed analytical solutions for
heat transfer models of pyrolysis in diluted moving beds: Bertoli (1989, 2000) using the Laplace Transform
and the Duhamel theorem; Meier et al. (2009) through the self-adjoint operator method. Those solutions
incorporate a quasi-linearized radiant heat transfer coefficient between the wall and the particle:

hr=£pO'(Tw2+Tps2)(Tw+Tps). (1)

With the aim of to evaluate the nonlinear radiant effects, in the present work a numerical solution by the
orthogonal collocation method is given. The results obtained are compared with an existent analytical solution
(Bertoli, 1989, 2000).

2. Model Equations

The main assumptions in the present analysis are the same as described in Bertoli (1989, 2000). The
equation of the model differs only by the fact that now the radiant term isn’t linearized. The equations for the
fluid and the particle are:
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With the following initial and boundary conditions:
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Defining the dimensionless variables:
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the following equations are identified:
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Also, with the variable change, u = r2, it follows that:
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3. Polynomial Approximation
The following polynomial approximation is introduced:

n+l n+l (11/2)
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Where:

/i(u)=jn Lagrangeinterpolating polynomia ,
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Pn(u)= aJacobi polynomial of ordern ,

b(r) = a(t) B,

Now defining,
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By the orthogonal collocation method, the collocation points are chosen as the zeros of a Jacobi polynomial; in
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where i = 1, ... n are internal collocation points.
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Therefore, from Eq. (2) — (5) we have
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The term in brackets in the last equation is equal 1. Also,
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Also, the mean temperature of the particle is given by
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Were, W, = weight of the quadrature (Radau quadrature with inclusion of u =1).
More details in the collocation method are given by Villadsen et al. (1978).
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4. Results

For the integration of the system of Eq. (6)—(9) we choose as initial  step, ho = 1,0 x 10 and as

precision, € = 1 x 10°%. Also, the following parameters were obtained from Bertoli (1989, 2000) (thermal test N°
5).

pr = 004823, 2 = 1.663x 10 ;

Ba = 009250, B« = 0.4260.

For 1 = 0, the Jacobian of the system of Eq. (6) — (9)is(N=2; &€ = 1x10%; ho=1x10% ;a=1; p=1%):

-1570 2003 -436 O

| 9965 —44.33 34.36 0
|-8.700 137.7 -130.05 1.013
0 0 0.4537 -0.546

This Jacobian matrix has the following eingenvalues:

A1 = -169.22; A2 = -20.71; 13=-0.033

Aa = -0.6769 .

in this case, the problem is stiff. So, for integration of the system formed by Eq. (6) - (9) we use a third order
semi-implicit Runge Kutta method STIFF 3 (Villadsen et al., 1978). The Figure (1) and Figure (2) were
generated to demonstrate the variation of the mean temperatures of the particle and of the fluid along the
reactor, respectively. The set of conditions were those of the thermal test N° 5 presented in Bertoli (2000)
(except for the wall temperature and the temperatures at the reactor entrance).

The results of the Figures (1) and (2) were obtained at Tw = 500 ° C and Tfi = Tpi = 150 ° C; they shown
excellent agreement in the numerical solution of this non-linear model and the analytical solution presented in
Bertoli (1989). This agreement is possible because in the region where the greater flow of radiant heat transfer
occurs for the particle (near the entrance of the reactor) the quasi-linearization of the radiant contribution is an
adequate approximation if the temperature of the particle surface does not vary significantly; that probably is
due to the high heat capacity of the solid, associated with the convective heat transfer between the fluid and
the particle. Furthermore, in the region where the temperature of the particle surface is high, the temperature
difference (Tw - Tps) is small and therefore at this point, the radiation is a small portion of the total heat
transferred to the particle in the reactor. It is important to note that although the wall temperature is 500°C,
radiant on the surface of the particles (Qrad / Qtotal)ps flow is in the range 60-80% by analytical solution
(Bertoli, 1989).
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Figure 1: Variation of average particle temperature ~ Figure 2: Changes in mean temperature of fluid along
along the reactor the reactor.
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5. Conclusion

The agreement between the numerical and analytical solutions demonstrates the capability of the orthogonal
collocation method in to handle the problem of heat transfer in moving beds. Also in the present work it was
possible to confirm several results from the literature obtained with the analytical solution of the equivalent
linearized heat transfer model for moving beds: In Bertoli (1989, 2000) it was pointed that radiant heat transfer
between the particle and the wall plays an important role and cannot be neglected in comparison with the
fluid—particle convective heat transfer; in Bertoli et al. (2012) a discussion was made relative to the time scales
involved in the thermal radiation phenomena; in Meier et al. (2009) it was defined a radiation Biot number
where a temperature inversion between the fluid and particle occurs. All these results are now supported
considering the non-linear nature of the thermal radiation phenomena, through the numerical solution
obtained. The numerical solution is particularly interesting at low values of t, where the analytical solution has
difficulties in convergence (Bertoli, 1989).

Nomenclature

A, wall differential area, 277 R dx T, wall temperature

Ap surface area of single particle, = 7 d; u axial velocity

C specific heat at constant pressure X axial distance

hp fluid to particle heat transfer coefficient o thermal diffusivity

h,  radiant heat transfer coefficient between the € void fraction

wall and the particle €, surface emissivity of particles
hw wall heat transfer coefficient éf radial position inside a particle
n, number of solid particles in the volume V P density

R, particle radius O  Stefan-Boltzmann constant
T temperature Subscripts

Tps particle surface temperature f fluid

V pipe differential volume, = 7 R? dx p particle
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