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This article aims to study the heat transfer in the pyrolysis of oil shale in a diluted and concurrent moving bed 
reactor. It was developed a numerical solution for a non-linear heat transfer (convective and radiant) model 
through the orthogonal collocation method. In this method the particle interior temperature profile is 
approximated by an orthogonal polynomial of an arbitrary degree that is replaced into the model equations 
generating a system of ordinary differential equations. The results obtained were compared with an existing 
analytical solution of the quasi-linearized heat transfer model. The comparison shown an excellent agreement 
in the range of the parameters analyzed. 
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1.  Introduction 

Brazil owns the second largest reserves of oil shale in the world. The main oil shale deposits are located less 
than 100 meters deep and are distributed in layers of variable thickness and distinct levels of kerogen. 
Generally, the content of organic matter in the deposits of oil shale ranges between 5% and 25%, as in the 
Irati formation of oil shale at São Mateus do Sul – PR, Brazil, which has a 9% average in oil. Under this 
perspective of research, aiming new sustainable ways of composing the global energy matrix, the 
decomposition of oil shale and gas has been studied in various aspects, and largely in the field of Chemical 
Engineering. Because it is a non-renewable resource and generates hazardous products for to the 
environment, it has been largely invested in research in order to achieve technologies combining energy 
efficiency with environmental sustainability. In this way, other works have developed analytical solutions for 
heat transfer models of pyrolysis in diluted moving beds: Bertoli (1989, 2000) using the Laplace Transform 
and the Duhamel theorem; Meier et al. (2009) through the self-adjoint operator method. Those solutions 
incorporate a quasi-linearized radiant heat transfer coefficient between the wall and the particle: 
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With the aim of to evaluate the nonlinear radiant effects, in the present work a numerical solution by the 
orthogonal collocation method is given. The results obtained are compared with an existent analytical solution 
(Bertoli, 1989, 2000).  

2. Model Equations 

The main assumptions in the present analysis are the same as described in Bertoli (1989, 2000). The 
equation of the model differs only by the fact that now the radiant term isn´t linearized. The equations for the 
fluid and the particle are: 
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With the following initial and boundary conditions: 
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Defining the dimensionless variables: 
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the following equations are identified: 
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Also, with the variable change, u = r2, it follows that: 
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3.  Polynomial Approximation 

The following polynomial approximation is introduced: 
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It follows that: 
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By the orthogonal collocation method, the collocation points are chosen as the zeros of a Jacobi polynomial; in 

this case, ,
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where i = 1, ... n are internal collocation points. 
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Therefore, from Eq. (2) – (5) we have 
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The term in brackets in the last equation is equal 1. Also, 
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Also, the mean temperature of the particle is given by 
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Were, jw  = weight of the quadrature (Radau quadrature  with  inclusion  of u = 1).  
More details in the collocation method are  given by Villadsen et al. (1978). 
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4. Results 

For the integration of the system of Eq. (6)–(9)   we     choose    as       initial     step, h0  = 1,0 x 10-5  and  as  
precision, ε = 1 x 10-6. Also, the following parameters were obtained from Bertoli (1989, 2000) (thermal test No 
5). 
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For τ = 0, the Jacobian of the system of Eq. (6) – (9) is (N = 2 ;   ε  =  1 x 10-6 ;  ho = 1 x 10-5  ; α = 1 ;  β = ½): 
 

 

 

 

 

 

This Jacobian matrix has the following eingenvalues: 

033.071.2022.169 321 −===  ; λ-  ;  λ - λ       

6769.04   -λ  = .  

in this case, the problem is stiff. So, for integration of the system formed by Eq. (6) - (9) we use a third order 
semi-implicit Runge Kutta method STIFF 3 (Villadsen et al., 1978). The Figure (1) and Figure (2) were 
generated to demonstrate the variation of the mean temperatures of the particle and of the fluid along the 
reactor, respectively.  The set of conditions were those of the thermal test No 5 presented in Bertoli (2000) 
(except for the wall temperature and the temperatures at the reactor entrance). 

The results of the Figures (1) and (2) were obtained at Tw = 500 ° C and Tfi = Tpi = 150 ° C; they shown 
excellent agreement in the numerical solution of this non-linear model and the analytical solution presented in 
Bertoli (1989). This agreement is possible because in the region where the greater flow of radiant heat transfer 
occurs for the particle (near the entrance of the reactor) the quasi-linearization of the radiant contribution is an 
adequate approximation if the temperature of the particle surface does not vary significantly; that probably is 
due to the high heat capacity of the solid, associated with the convective heat transfer between the fluid and 
the particle. Furthermore, in the region where the temperature of the particle surface is high, the temperature 
difference (Tw - Tps) is small and therefore at this point, the radiation is a small portion of the total heat 
transferred to the particle in the reactor. It is important to note that although the wall temperature is 500ºC, 
radiant on the surface of the particles (Qrad / Qtotal)ps flow is in the range 60-80% by analytical solution 
(Bertoli, 1989).  
 

Figure 1: Variation of average particle temperature 
along the reactor 

Figure 2: Changes in mean temperature of fluid along 
the reactor. 
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5. Conclusion 

The agreement between the numerical and analytical solutions demonstrates the capability of the orthogonal 
collocation method in to handle the problem of heat transfer in moving beds. Also in the present work it was 
possible to confirm several results from the literature obtained with the analytical solution of the equivalent 
linearized heat transfer model for moving beds: In Bertoli (1989, 2000) it was pointed that radiant heat transfer 
between the particle and the wall plays an important role and cannot be neglected in comparison with the 
fluid–particle convective heat transfer; in Bertoli et al. (2012) a discussion was made relative to the time scales 
involved in the thermal radiation phenomena; in Meier et al. (2009) it was defined a radiation Biot number    
where a temperature inversion between the fluid and particle occurs. All these results are now supported 
considering the non-linear nature of the thermal radiation phenomena, through the numerical solution 
obtained. The numerical solution is particularly interesting at low values of τ, where the analytical solution has  
difficulties in convergence (Bertoli, 1989). 
 
Nomenclature 
 

wA     wall differential area, dx2 Rπ  wT  wall temperature 

pA  surface area of single particle, 2
pdπ=  u  axial velocity 

C       specific heat at constant pressure x  axial distance 

ph      fluid to particle heat transfer coefficient α  thermal diffusivity 

rh      radiant heat transfer coefficient between the 
wall and the particle 

ε  void fraction 

pε  surface emissivity of particles 

wh
     

wall heat transfer coefficient ξ  radial position inside a particle 

vn
      

number of solid particles in the volume V ρ  density 

pR  particle radius σ  Stefan-Boltzmann constant 
T  temperature Subscripts

psT  particle surface temperature f  fluid 

V  pipe differential volume, dx2Rπ=  p particle 

References 

Bertoli S. L., 1989, Radiant and Convective Heat Transfer in Moving Beds, M. Sc. Thesis, COPPE, Rio de 
Janeiro, Brazil (in Portuguese). 

Bertoli S.L., 2000, Radiant and convective heat transfer on pneumatic transport of particles: an analytical 
study, International Journal of Heat and Mass Transfer, 43, 2345-2363, DOI: 10.1016/S0017-
9310(99)00280-X 

Bertoli, S. L., Valle, J. A. B., Gerent, A. G., Almeida, J., 2012, Heat transfer at pneumatic particle transport — 
Limit solutions, Powder Technology,  232, 64–77, DOI: 10.1016/j.powtec.2012.07.050 

Meier H. F., Noriler D., Bertoli S. L., 2009, A solution for a heat transfer model in a moving bed through the 
self-adjoint operator method, Latin American Applied Research, 39, 327-336. 

Villadsen, J., Michelsen, M. L., Solution of Differential Equation Models by Polynomial Approximation, Pearson 
Education, Limited, 1978. 

1572




