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We investigate numerically the critical conditions for detachment of an isolated, wall-bound pendant emulsion 
droplet acted upon by surface tension and wall-normal buoyancy forces alone. To that end, we present a 
simple extension of a diffuse interface model for partially miscible binary mixtures that was previously 
employed for simulating several two-phase flow phenomena far and near the critical point ["Phase-Field 
Approach to Multiphase Flow Modeling," Milan J. Math. 79, 597 (2011)] to allow for static contact angles other 
than 90°. Initially, we show that a formulation of the Cahn boundary condition based on a linear interpolation of 
surface tensions between the wall and each phase at equilibrium can be readily implemented in our numerical 
procedures by introducing a contact line indicator function and changes to our numerical algorithm that include 
an iterative method of enforcing inhomogeneous boundary conditions within a semi-implicit temporal scheme 
for the Cahn-Hilliard equation. Subsequently, the classical formulation of the Cahn boundary condition as first 
proposed by Jacqmin ["Contact-line dynamics of a diffuse fluid interface," J. Fluid Mech. 402, 57 (2000)], 
which accommodates a cubic (Hermite) interpolation of surface tensions between the wall and each phase at 
equilibrium, has also been incorporated into our numerical code. We show that the resulting phase-field 
models can be successfully employed for simulating three-phase contact line problems in stable emulsions 
with nearly immiscible components. We also show the first numerical determination of critical Bond numbers 
as a function of static contact angle by phase-field simulation. In addition, results of 3D simulations are 
compared to critical Bond numbers from a static stability analysis based on a numerical integration of the 
Young-Laplace equation. We argue that the discrepancy between our numerically determined static contact 
angle dependence of the critical Bond number and its sharp-interface counterpart is mainly due to the inability 
of the sharp interface analysis to describe the necking regime of drop detachment, where a sharpening of 
concentration gradients in the necking region produces an effective increase in (dynamic) surface tension, 
ultimately leading to a reduced tendency to detachment or an increase in the critical Bond number. 

1. Introduction 

We simulate the influence of static contact angle on the buoyancy-driven detachment of an isolated emulsion 
droplet initially adhering to a wall under gravitational forcing, as a sequel to our previous study of Marangoni 
migration of a wall-bound drop in a temperature gradient (Lamorgese and Mauri, 2011), wherein simulations 
with a static contact angle of 90  were presented showing the existence of a critical gradient strength for 
detachment and subsequent migration to the hot wall, for an isolated droplet initially adhering to the cold wall. 
In this work, we intend to study the mechanics of buoyancy-driven detachment in greater detail by determining 
the critical Bond number as a function of static contact angle. In fact, although the buoyancy-driven 
detachment of oily deposits (and liquid emulsion droplets in particular) from a solid substrate is of considerable 
interest in many industrial applications, due to the complexity of the removal process and the large variations 
in soils and substrates encountered, the details of the detachment process remain poorly understood and 
have long been the subject of active research. Although experiments and simulations on the buoyancy-driven 
detachment of liquid emulsion droplets from solid substrates have been carried out in the past (Schwartz, 
1972; Dillan et al., 1979; Gum and Goddard, 1982; Aronson et al., 1983; Raney and Miller, 1987; Thompson, 
1994; Kolev et al., 2003; Kralchevsky et al., 2005; Liu et al., 2012), none of these previous studies has 
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addressed the critical Bond number as a function of the relevant nondimensional parameters systematically. In 
fact, in addition to the works cited above, a number of theoretical, numerical and experimental investigations 
have been focused on the influence of a shear flow on the conditions for drop removal from solid surfaces 
(Basu et al., 1997; Dimitrakopoulos and Higdon, 1998; Theodorakakos et al., 2006; Golpaygan and Ashgriz, 
2008), neglecting the more fundamental case of a pendant drop acted upon by surface tension and wall-
normal buoyancy forces alone. Although the critical Bond number for buoyancy-driven detachment as a 
function of static contact angle has been addressed previously by numerical integration of the Young-Laplace 
equation (Chatterjee, 2002a,b; Chen et al., 2005), to our knowledge computations of that dependence based 
on a phase-field model have not been presented in the literature before and are reported here for the first 
time. In the remainder of this paper, we present in Section 2 definitions of nondimensional parameters arising 
in our phase-field model, along with a brief discussion of the linear interpolation formulation of the Cahn 
boundary condition as opposed to its classical formulation, as first proposed by Jacqmin (2000). Then, in 
Section 3 we show the first numerical determination of critical Bond numbers as a function of static contact 
angle by phase-field simulation. Conclusions are then presented. 

2. The governing equations 

The derivation of the governing equations has been presented elsewhere (Lamorgese and Mauri, 2014). 
There, the equations of motion for a regular binary mixture with partially miscible components at low Reynolds 
number were derived rigorously, starting from the fundamental conservation principles, together with 
constitutive modelling for the diffusive volumetric flux based on irreversible thermodynamics. After diffusive 
scaling of the Stokes/Cahn-Hilliard system, the dimensionless parameters that appear in the governing 
equations were shown to be the standard fluidity coefficient (Tanaka and Araki, 1998) together with a Bond 
number, defined as 2( / )cBo d l≡ , where d is the initial droplet diameter and /c eql gσ ρ φ≡ Δ  is a capillary 

length. (Here and below, eq eq eq
α βφ φ φΔ ≡ −  denotes the composition difference in terms of mass fractions 

between the two phases at equilibrium while σ denotes their surface tension.) Also, wettability effects were 
included in our phase-field formulation by introducing the simplest additional surface contribution to the free 
energy functional, which is based on the assumption that wettability is a local quantity, solely depending on 
the local concentration of the two-phase fluid at the wall (Cahn, 1977). A derivation of the Cahn boundary 
condition was then presented by considering the first variation of the augmented free energy functional along 
with a surface free energy consisting of a linear interpolation of the surface tensions between the wall and 
each phase at equilibrium, i.e., 

,( ) = ( ),s s eq
eq

g β
β

σφ σ φ φ
φ

Δ+ −
Δ

   (1) 

where , ,s sα βσ σ σΔ ≡ − expresses the affinity of the wall to the equilibrium α phase, as compared to the 

equilibrium β phase. Note that the resulting formulation of the Cahn boundary condition can only be correct at 
the contact line since there is no contact angle for any wall region where a single phase at equilibrium wets 
the wall. However, since in such regions Eq. (1) is able to reproduce a constant surface tension, then after 
variation of the augmented functional the Cahn boundary condition correctly reduces to a trivial identity in all 
such regions (as it should). This observation can be incorporated into the Cahn boundary condition by 
introducing a contact line indicator function (i.e., equal to one at the contact line and zero elsewhere), which 
makes this linear interpolation formulation viable as a boundary condition for the Cahn-Hilliard equation. 
In fact, it can be argued that as a consequence of considering values of contact angle other than 90 , two 
Margules coefficients should be employed for modelling the surface free energy at the wall (Smith and Van 
Ness, 1987). Hence, any modelling expression which interpolates ,sασ  (at = eq

αφ φ ) and ,sβσ  (at = eq
βφ φ ) should 

be based on a cubic expression in powers of φ , which is uniquely determined by the following conditions: (i) 

,( ) =s eq sg α
αφ σ and ,( ) = ,s eq sg β

βφ σ (ii) ( ) = ( ) = 0s eq s eqg gα βφ φ′ ′ . Finally we obtain (Jacqmin, 2000): 

2
, 3( ) = ( ) (3 2 ).

( )s s eq eq eq
eq

g β α β
β

σφ σ φ φ φ φ φ
φ
Δ+ − − −

Δ
    (2) 

In both cases, the right-hand side of the Cahn boundary condition involves a factor of /σ σΔ which can be 
handled by means of Young's equation, cos = / .θ σ σ−Δ  This is an additional relation (lying outside of the 
diffuse interface framework) that must be invoked to make the connection with the equilibirum contact angle 

.θ  Consequently, the Cahn boundary condition for the Hermite interpolation formulation can be rearranged to 
the form: 
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3

cosˆ = 12 ( )( ),
( ) eq eq

eqa
α βθφ φ φ φ φ

φ
⋅∇ − − −

Δ
n

K
   (3) 

where WM
RTa

σ
ρ

≡K  is a (dimensionless) surface tension coefficient while a  denotes a (coarse-grained) sub-

micron scale length, which represents the typical interface thickness at equilibrium. This formulation of the 
Cahn boundary condition has been employed for obtaining the principal result reported in this paper, i.e., the 
dependence of the critical Bond number for detachment of an isolated, wall-bound droplet as a function of the 
static contact angle. Numerical results based on the linear interpolation formulation in comparison to the 
Hermite interpolation formulation will be reported in future work. 

3. Numerical results 

Numerical methods are the same as in our previous works (Lamorgese and Mauri, 2008, 2011). However, it is 
worth noting that in our previous work (Lamorgese and Mauri, 2008) homogeneous boundary conditions on 
the first- and third-order y-derivatives of the concentration at the wall had been imposed using an influence-
matrix technique (Canuto et al., 1988). In this work, inhomogeneous conditions on those derivatives have 
been dealt with in either one of two ways: (i) by interpolating the inhomogeneous boundary conditions as a 
body force so that our previous influence matrix solver could still be utilized (Shen, 1994), (ii) by making 
changes to our influence matrix solver that allow for inhomogeneous boundary conditions. In fact, although a 
modified influence matrix solver for inhomogeneous conditions was implemented in our code, in our 
production runs we chose the former method of boundary condition interpolation as a body force due to its 
lower complexity. In what follows, the static contact angle dependence of the critical Bond number will be 
discussed by first using dimensionless parameters that are readily accessible in our numerical setup. 
Subsequently, using a change of variables that dependence will also be presented in terms of standard

 
Figure 1: Snapshots of mass fraction isosurfaces at different (nondimensional) times 3= 5 10t −⋅ , 23.8 10−⋅  and 

24.3 10−⋅  from phase-field computations with = 2.7Ψ , = 100α  and = 0.1127φ   on a 64 65 64× × grid 

corresponding to 2= 6.56 10σ −Δ − ⋅  with = 1.6 cG G  (top row), 2= 6.56 10σ −Δ ⋅  with = 1.5 cG G  (middle row) and 
2= 3.28 10σ −Δ − ⋅  with = 0.8 cG G  (bottom row).  
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(i.e., θ  and Bo ).  In fact, the actual dimensionless groups that appear in the governing equations after 
diffusive scaling of the Stokes/Cahn-Hilliard system are the previously noted fluidity coefficient and a 
(dimensionless) magnitude of the buoyancy force, defined as 

32

, = ,eq

W

g dRTa GaSc
M D D

φ
α

ν αν α
Δ

≡ ≡  a    G    (4) 

where 3 2/eqGa g dφ ν≡ Δ  is a Galileo number while /Sc Dν≡  is the Schmidt number ( WM  being the molecular 

mass of both component species). Hence it becomes clear that the critical conditions for detachment of an 
isolated, wall-bound drop can be uniquely identified through the dependence ( )=c fn σΔ G , where 

/ WRTa M
σσ

ρ
ΔΔ ≡  is the dimensionless surface tension difference at the wall. Note that, based on our previous 

definitions, we have 
/cos = , and = .a dBoσθ Δ−


G

K K
   (5) 

The presence of K  in the denominator of both of these relations (due to a reciprocal dependence on σ  when 
rearranged in terms of dimensional quantities) indicates that θ  and the Bond number are not readily available 
in our numerical setup and can only be evaluated after a numerical determination of K  (further addressed 
below). Simulations of buoyancy-driven detachment were carried out in a computational domain of size 

= = ,
2x zL L Naπ =yL Na  ( = 64),N  with a pendant droplet (having a radius of 12a ) of the minority phase 

embedded in a continuous phase (with both phases at equilibrium), corresponding to = 0.1127φ  . In the first 

set of simulations, we chose = 2.7Ψ  (corresponding to equilibrium mass fractions = 0.1069eq
βφ and 

 
Figure 2: Critical Bond numbers as a function of static contact angle from phase-field computations with 

= 2.7Ψ , = 100α  and = 0.1127φ   on a 64 65 64× ×  grid (solid) vs. static stability analysis of equilibrium 
shapes obtained from the Young-Laplace equation (dashed). 
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= 0.8929)eq
αφ and = 100,α yielding results that could be considered as roughly representative of a binary 

mixture with nearly immiscible components. Values of dimensionless surface tension difference were chosen 
in a discrete set 2 2 2 2= { 8.68 10 , 6.56 10 ,0,6.56 10 ,8.68 10 }σ − − − −Δ − ⋅ − ⋅ ⋅ ⋅ . For each such value, we ran simulations for 
different (nondimensional) buoyancy magnitudes to identify the critical magnitude corresponding to a pinch-off 
event. This is documented in Figure 1 showing snapshots of mass fraction isosurfaces at different 
(nondimensional) times for three cases corresponding to detachment with < 0σΔ   and > 0σΔ   and to no 
detachment with < 0σΔ  . In particular, we found 2= 8.68 10σ −Δ ⋅  as the smallest (positive) surface tension 
difference for which a drop would detach from the wall under a zero gravity magnitude. This value of surface 
tension difference can be interpreted (in dimensional terms)  as defining the reference surface tension needed 
for introducing θ  as an alternative abscissa in place of σΔ   (i.e., =σ σΔ  with = 0cG  corresponds to 

= 180 ).θ  Based on the first relation in (5), this then identifies the value 2= 8.68 10∗ −⋅K  for switching to a 

= ( )cBo fn θ  description. The corresponding values of θ  are in the discrete set {0 ,40.9 ,90 ,139 ,180 }     . Hence 

we see that the cases shown in Figure 1 correspond to detachment with < 90θ   and > 90θ   and to no 
detachment with < 90θ  . For each value of < 90θ  , we found that for all Bond numbers larger than critical a 
partial detachment event occurs. In contrast, for values 90θ ≥   we found that a Bond number much larger 
than critical corresponds to a partial drop detachment from the solid surface, while for Bond numbers only 
slightly larger than critical a complete detachment is achieved. 
These numerical results are summarized in Figure 2, showing the critical Bond number as a function of static 
contact angle. Also shown in this Figure are critical Bond numbers for axisymmetric droplets as a function of 
contact angle from sharp-interface equilibrium calculations based on Surface Evolver (Chen et al., 2005). As 
can be seen, these values are approximately half of those determined by phase-field simulation. We can only 
speculate on the factors leading to such a discrepancy, since a more precise assessment should be based on 
a large database of buoyancy-driven detachment simulations (missing in our case). It should be borne in mind 
that in all simulations reported herein a drop of the minority phase displaces continuous phase fluid when 
settling in the gravity direction, and this creates a backflow in its vicinity which could tend to further hinder the 
detachment process as the backflow strength increases. Although the effects of a backflow are likely to be 
significant for Bond numbers much larger than the critical value at a given contact angle, based on the 
observation of an extremely slow process of detachment very near to the critical condition (i.e., for Bond 
numbers only slightly larger than critical), a backflow is expected to have a negligible influence on the critical 
Bond number. 
Another, more important, factor contributing to the discrepancy in Figure 2 is the static stability analysis 
ignoring the dynamics of the detachment process. In particular, a sharp-interface description together with its 
assumption of constant surface tension are expected to fail in the necking regime of drop detachment, where 
a sharpening of concentration gradients in the necking region leads to an effective increase in (dynamic) 
surface tension, ultimately leading to a reduced tendency to detachment or an increase in the critical Bond 
number. 

4. Conclusions 

We have discussed results of 3D phase-field simulations of buoyancy-driven detachment of a pendant 
emulsion droplet with the main objective of determining the critical Bond number as a function of static contact 
angle. Starting from the basic conservation principles, we have shown that a diffuse interface description of 
partially miscible binary liquid mixtures far from the critical point can be successfully employed for simulating 
triphase contact line problems in stable emulsions with nearly immiscible components. In addition, our 
numerical results have shown a characteristic monotonic behaviour of the critical Bond number as a function 
of static contact angle. We argue that the discrepancy between our numerically determined static contact 
angle dependence of the critical Bond number and its sharp-interface counterpart from a static stability 
analysis based on a numerical integration of the Young-Laplace equation can be explained in terms of (i) the 
inability of the sharp-interface analysis to describe the later stages of the detachment process and, in 
particular, the sharpening of concentration gradients leading to an effective increase in (dynamic) surface 
tension and critical Bond number, and (ii) a nonnegligible dependence on mean mass fraction of the critical 
Bond number at a given contact angle, due to a backflow which tends to hinder the detachment process as 
the backflow strength increases. However, that dependence cannot be properly resolved using the present 
dataset and is left for future work. 
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