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The metal electrodeposition through a colloidal crystal mask is simulated by using the multi-level 
approach. The space near the cathode surface is divided into several zones with different characteristics 
of transport processes. In each zone, 1D or 3D approximations may be used. In the zones of 1D type, the 
distributions of electroactive ion concentration and potential are calculated by the analytical equations; in 
the zones of 3D type, the numerical finite element method is used. The transport processes in the 
neighboring zones are conjugated by using the condition of equal currents through the boundary between 
these zones. 
In this work, we develop the method of simulation of metal electrodeposition in the solution with an excess 
of supporting electrolyte: the migration transfer of all ions is taken into account and the electrode reaction 
governed by the equation of Butler-Volmer is considered. The developed mathematical model involves the 
Laplace equation for the concentration of electroactive ion, effective concentration of supporting 
electrolyte, and potential. It is shown that the model can be reduced to a single Laplace equation for the 
concentration of electroactive ion with the corresponding boundary conditions. 
As a result of modeling, the distributions of electroactive ion concentration and cathodic current density are 
obtained for various instants of time (deposit of various thicknesses). The calculated dependences of 
current on the deposit thickness agree with the literature data. The relative amplitude of current 
oscillations, which is determined by the variation of relative pore area along the height of colloidal crystal, 
depends on the ratio of an average current density to the limiting current density: when an average current 
approaches the limiting one, the relative amplitude of current oscillations decreases. 

1. Introduction 
Colloidal crystals, which are formed by orderly arranged monodispersed spherical particles, are used as 
the templates for production of nano-ordered structures of metals, semiconductors, inorganic oxides, 
polymers, diamond, glassy carbon, etc. (Velev et al., 1999; 2000; Stein, 2001; Braun and Wiltzius, 2002; 
Texter, 2003; Meseguer, 2005; Asoh et al., 2007; Paquet and Kumacheva, 2008; Nair and Vijaya, 2010). 
In general case, the production of nano-ordered structures by using the colloidal crystal mask involves 
three stages: 
(1) the self-assembling of mask on the substrate surface; 
(2) filling the pores between the template spherical particles; 
(3) removal of template by chemical or thermal etching. (In some cases, for example, in the production of 
photonic crystals, the template is not removed.) 
The electrochemical deposition through a colloidal crystal mask enables one to produce high-density metal 
deposits, which exhibit no considerable shrinkage when the template is removed (Bartlett et al., 2002; 
Spada et al., 2008; Xia et al., 2010). In addition, the deposits of various metals with prescribed structure 
can be produced, and the thickness and properties of deposited layer can be controlled accurately. 
During the potentiostatic electrodeposition through multilayer colloidal crystal, the current oscillations are 
observed. They are explained by the variation in the electroactive area, when the pores between the 
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particles are filled in the course of deposit growth (Sumida et al., 2002; Spada et al., 2008; Sapoletova et 
al., 2010). This is caused by (1) the presence of defects in the colloidal crystal; (2) nonuniform rate of 
deposit growth over the electrode surface; and (3) nonplanar deposit front in a pore. Depending on the 
electrodeposition conditions, an average current over an oscillation period can decrease (Sumida et al., 
2002) or increase with time (Sapoletova et al., 2010). 
In spite of a large number of the works devoted to the experimental study of electrodeposition through a 
colloidal crystal mask, only some papers are concerned with the theoretical study of the process (Newton 
et al., 2004; Volgin et al., 2012) In these papers the Laplace’s equation in a unit cell with triangular cross-
section for the face-centered cubic (fcc) colloidal crystal was solved numerically. The process of pore filling 
and the variation of the mass-transfer conditions with increasing deposit thickness were not considered. 
Recently, Bograchev et al. (2013a; 2013b) have proposed approximate models and the methods of 
calculation of mass-transfer processes and pore filling for the metal electrodeposition through a mask with 
regularly arranged cylindrical pores. 
This work is devoted to the numerical simulation of mass-transfer processes in the metal electrodeposition 
through a colloidal crystal mask with regard for the variation of deposited layer thickness with the time. 

2. Statement of problem and basic equations 
In the electrodeposition through a colloidal crystal mask, several zones near the electrode can be 
recognized (Figure 1): 
(I) a zone adjacent to the substrate, where the distributions of concentration and potential are 3D (zone of 
colloidal crystal mask);  
(II) the outer part of diffusion layer, where the distributions of concentration and potential can be 
considered as 1D (zone of diffusion layer in electrolyte solution);  
(III) – bulk electrolyte solution, where the concentrations are constant and potential varies linearly as we 
move away from the substrate with colloidal crystal mask. 
We will restrict our consideration to the case of metal electrodeposition from the solution containing three 
types of ions, for example, a solution of metal salt and supporting electrolyte containing a common anion. 
Within the theory of dilute electrolytes, under the assumption of solution electroneutrality, the equations of 
ionic transport in the diffusion layer adjacent to the substrate can be written as follows: 
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where kc , kD , and kz  are the concentration, diffusion coefficient, and charge of ions of the k-th type (k=1 

for electroactive metal cation, k=2 for supporting electrolyte cation, and k=3 for the common anion); ϕ  is 

the potential in the solution; t  is the time; F  is the Faraday’s constant; R  is the gas constant; and T  is 
the temperature of solution. 
In system of equations (1), the migration term in the transport equation for the electroactive component  
( 1c ) is omitted. This is allowable at a high concentration of indifferent electrolyte (Volgin and Davydov, 
2006), i.e. at 

bb
cc 12 >>  (2) 

where subscript b corresponds to the bulk electrolyte solution. 
Passing to the dimensionless variables, diameter of spherical particles 

sphd  is taken as a unit length, 

FRT /  is taken as a unit potential, 
b

c1  is taken as a unit concentration, and 1
2 / Ddsph  is taken as a unit 

time. A new variable, which characterizes the concentration on inactive ions, is introduced: 

bb
CCCCC 33224 −+−=  (3) 
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Then, system of equations (1) can be written as follows: 
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where kC  is the dimensionless concentration of ions of the k-th type and τ  is the dimensionless time; 
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Figure 1: (a – c) Arrangement of zones adjacent to the substrate with a colloidal crystal mask and (d, e) 
computational domains: (a) initial arrangement; (b) arrangement during electrodeposition (with partly filled 
pores); (c) final arrangement (with fully filled pores); (d) computational domain corresponding to the initial 
arrangement; (e) computational domain corresponding to the arrangement during electrodeposition. 

The diffusion rate (a typical time constant is seconds or tens of seconds) is significantly higher than the 
rate of pore filling with the metal (a typical time of pore filling is hundreds or thousands of seconds). 
Therefore, the quasi-steady-state approximation can be used. Within this approximation, the distributions 
of concentration and potential are calculated by the equations for the steady-state transport processes. 
The effect of time is taken into account via the parameter, which characterizes the current position of the 
front of metal deposit filling the pores. We restrict our consideration to the case of plane metal front; then, 
within the quasi-steady-state approximation, system of equations (4) can be written as follows: 
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To solve the above system of equations, it is necessary to determine the shape and sizes of computational 
region and prescribe the corresponding boundary conditions. Here, a unit cell with triangular cross-section 
is taken as a computational region (Volgin et al., 2012); the lower boundary of the cell corresponds to the 
growing metal deposit surface ( bottomZZ = ), and the upper boundary ( topZZ = ) is offset by a certain 

distance (about 
sphd ) from the outer boundary of colloidal crystal mask, so that the concentration and 

potential on it are independent of the lateral coordinates (Figures 1d, 1e). 
The boundary conditions for system of equations (5) can be written as follows. 
On the planes of symmetry and the spherical particles surfaces: 
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On the upper boundary of computational region: 
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On the lower boundary of computational region (the metal deposit surface): 
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Here, N is an outer normal to the computational region boundary; 0I  is dimensionless exchange current 

density; α  is the transport coefficient; *
1C  and *Φ  are the concentration and potential on the outer 

boundary of computational region, which are determined from the condition of conjugation of transport 
processes in the computational region, in the outer diffusion layer and in the bulk electrolyte solution. 
From (5) – (8), it follows that 04 =C , and potential is related to the concentration of electroactive ion by 
the following equation: 

( ) Φ+−=Φ ~11CM  (9) 

where ))/(( 33231 b
CzzzzM −= ; Φ~  is the potential on the outer boundary of diffusion layer. 

Substituting (9) into boundary conditions (6) – (8), we obtain the boundary value problem for the 
concentration of electroactive cations: 
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Thus obtained mathematical model was used to simulate the metal electrodeposition through a colloidal 
crystal mask. 

3.  Results and discussion 
The numerical solution of boundary value problem (10) was performed by the finite element method. The 
mesh parameters were chosen so that the calculated results were independent of the mesh step and the 
number of nodes (Figure 2). 
In the calculations, the dimensionless potential on the outer boundary of diffusion layer (the resistance of 
bulk electrolyte solution was ignored, because the electrode potential on the outer boundary of diffusion 
layer rather than a voltage was imposed) was taken to be 1 and 5; the diffusion layer thickness was taken 
to be 100; the number of particle layers, 3. The computational region thickness was taken to be 4 (this 
provided uniform distributions of concentration and current density over the outer boundary of 
computational region). The dimensionless exchange current density was taken to be 0.05. It was 
determined as a ratio of the exchange current density to the limiting current density, which was calculated 
by the diameter of spherical particles. The diameter of particles is rather small; therefore, the limiting 
current density is rather high and the dimensionless current density is much smaller than unity. A ratio 
between the concentration of supporting electrolyte and the concentration of electroactive ions was taken 
to be 10. All diffusion coefficients were taken to be 10-9 m2/s; the ion charges, +1 and -1. 
Figure 2 shows the distributions of concentration of electroactive ion over the growing deposit surface for 
various instants of time (various deposit thickness). 
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Figure 2: (a, c) A mesh of finite elements and (b, d) the distribution of concentration of electroactive ion at 

a dimensionless imposed voltage 5~ =Φ : (a) and (b) 0=bottomZ  (corresponds to the onset of metal 

deposition); (c) and (d) 32.1=bottomZ  (corresponds to the instant of time when the deposit front is located 

in the plane passing through the centers of spherical particles of the second layer). 

Figure 3 gives the variations in the current density during the filling of colloidal crystal pores with metal 
deposit at various imposed voltages. 

 

Figure 3: Dependences of dimensionless current on the deposit thickness: (1) 5~ =Φ , (2) 1~ =Φ , (3) a 
relative area of the pores. 

The simulated dependences of the current on the deposit thickness agree with the experimental data: the 
current decreases with decreasing electroactive surface area. A relative amplitude of current oscillations 
depends on the ratio of an average current density to the limiting current density for the electrode through 
a colloidal mask: a relative amplitude of current oscillations decreases when an average current 
approaches the limiting value. 

4. Conclusions 
The proposed mathematical model of transport processes in the metal electrodeposition through colloidal 
crystal mask is based on the quasi-steady-state approximation. The kinetics of metal ion reduction is taken 
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into account by the Butler-Volmer equation. Under the assumption of a plane front of growing metal 
deposit, the dependences of an average current density (deposit growth rate) on the thickness of 
deposited metal layer (time) were obtained. These dependences agree with the literature data. In 
particular, the model enables us to obtain the quantitative dependences between the thickness of 
deposited metal layer, the operating conditions, and the current density. 
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