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Energy conservation is one of the most common concerns in gas separation plants. It plays a key role in 

energy and operating cost saving of their high-energy consuming processes. Although many research 

works on heat exchanger network (HEN) synthesis has been extensively studied for more than 40 years, 

most of them have limitations on computational time and feasibility due to their mathematical difficulties. 

Thus, they are impractical for large problems as industrial cases. In this work, a strategy for HEN synthesis 

was presented and applied to the industrial case of gas separation plant no.2 (GSP2) in Thailand 

consisting of twelve hot and eleven cold process streams. The strategy for HEN synthesis is a combination 

of Pinch Technology, the well-known thermodynamics-based approach, and mathematical programming 

based on the stage-wise superstructure model. HEN was synthesized in two parts; above and below 

pinch, corresponding to the optimal pinch temperature as well as the heat recovery approach temperature 

(HRAT) predicted by Pinch Analysis in order to assure near-optimal design. The HEN was then improved 

by a mathematical model applying relaxation technique based on a concept of loop and path toward better 

design with less complexity. According to the industrial case of GSP2, the proposed strategy for HEN 

synthesis is effective where a good solution can be obtained with reasonable computational time. 

1. Introduction 

The world has been facing an energy crisis for a few decades. The rising cost of energy has a significant 

impact on industry, especially gas separation plant (GSP). According to its high-energy consuming, energy 

conservation is one of the most common concerns to save an operating cost. Heat exchanger network 

(HEN) synthesis, heat integration between hot and cold process streams, has been widely applied for that 

purpose. Research works on HEN synthesis have been done for more than 40 years by many researchers 

(Klemeš and Kravanja, 2013); Linnhoff and Hindmarsh (1983) introduced the thermodynamics based 

technique to predict an optimal heat recovery approach temperature (HRAT) for inventing good HEN 

design. Yee and Grossmann (1990) developed the mixed integer nonlinear programming (MINLP) 

formulation of stage-wise superstructure considering all trade-offs simultaneously. Barbaro and 

Bagajewicz (2005) presented a rigorous mixed integer linear programming (MILP) formulation for HEN 

synthesis relying on transportation/transshipment concepts. Since mathematical formulations for HEN 

synthesis contain nonlinear equations, most of them are impractical for large problems as industrial cases 

due to large computational time and lack of feasibility. To overcome this limitation, heuristics, 

thermodynamic methods and optimization should be used in a combination to narrow solution space and 

numerical complexity (Anantharaman et al., 2013). This research work developed the three-step approach 

for HEN synthesis and applied to the industrial case of gas separation plant no.2 (GSP2) in Thailand. The 

strategy is a combination of thermodynamic principles based on Pinch Technology concept (Linnhoff and 

Vredeveld, 1984) and mathematical optimization based on stage-wise superstructure model (Yee and 

Grossmann, 1990). 
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2. Methodology 

There are three steps to synthesize HEN as shown in Figure 1. In the first step, an optimal HRAT was 

predicted and then used to synthesize HEN to assure near-optimal design in the second step. After that 

the HEN was improved toward better design with less complexity in the last step. 

2.1 Targeting by Pinch Analysis 
Pinch Analysis predicted the optimal HRAT as well as Pinch location providing the best value of objective 

function based on vertical heat transfer area and minimum number of process heat exchangers. In this 

study, Grassroots Potential Program (Siemanond and Kosol, 2012) was used as an automated tool for this 

step. The program was implemented on Microsoft Excel incorporating with Visual Basic for Applications 

(VBA).  

2.2 HEN synthesis by stage-wise model with pinch temperature 
The stage-wise model with pinch temperature is the MINLP stage-wise model (Yee and Grossmann, 1990) 

where pinch temperatures of hot and cold process streams are located in the model as shown in Figure 2. 

The model synthesized a HEN by using the pinch temperatures from previous step to restrict utility load. 

The HEN was designed in 2 parts; above and below Pinch. This simplifies the model to be optimized only 

number of heat exchangers and their area.  

2.3 HEN improvement by stage-wise model with topology control 

According to the heuristic rule of the Euler’s general network theorem observed by Hohmann (1971) 

expressed in a simple relationship, as shown in the following equation where      is minimum number of 

units and   is number of process streams and utilities. 

The number of heat exchangers in the previous step is often large because of the existence of pinch in the 

HEN; as a result, the designed HEN is complex and unfavorable for construction. In this step, the 

relaxation technique was introduced to improve the HEN from previous step and reduce its complexity, 

achieving a better value of objective function. The Pinch Point was removed to allow cross-pinch heat 

transfer, and the problem was then re-optimized with the control of matching from the previous step. The 

number of heat exchangers should be reduced with some shift of HRAT.  
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Figure 1: The proposed three-step strategy for HEN synthesis 

         (1) 



 
1473 

tC2,K2

tC1,K2

tH2,K2

tH1,K2

tC2,K1

tC1,K1

tH2,K1

tH1,K1

tC2,K3

tC1,K3

tH2,K3

tH1,K3

tC2,Kn

tC1,Kn

tH2,Kn

tH1,Kn

tC2,Kn+1

tC1,Kn+1

tH2,Kn+1

tH1,Kn+1

tC2,KP

tC1,KP

tH2,KP

tH1,KP

tC2,Kn-1

tC1,Kn-1

tH2,Kn-1

tH1,Kn-1

H1-C1

H1-C1

qH1,C1,K1

H1-C2

H1-C2

H2-C1

H2-C1

H2-C2

H2-C2

qH1,C2,K1

qH2,C1,K1

qH2,C2,K1

H1

H2

HU-C1

HU-C2

H1-CU

H2-CU

tH2,IN

tH1,IN

tC2,OUT

tC1,OUT

tH2,OUT

tH1,OUT

H1-C1

H1-C1

qH1,C1,Kn

H1-C2

H1-C2

H2-C1

H2-C1

H2-C2

H2-C2

qH1,C2,Kn

qH2,C1,Kn

qH2,C2,Kn

Stage

K1

Stage

K2

Stage

Kn

tC2,IN

tC1,IN C1

C2

qH1,CU

qH2,CU

qHU,C1

qHU,C2

Location

K1

Location

K2

Location

K3

Location

Kn

Location

Kn+1

Location

Pinch

Location

Kn-1

Stage

Kn-1
Pinch point

 

Figure 2: Stage-wise model with Pinch temperature 

3. Case Study 

The case study is the industrial case of GSP2 in Thailand consisting of twelve hot and eleven cold process 

streams, one cooling and one heating utility. The data for HEN synthesis are shown in Table 1, 2, and 3. 

The objective function of all steps is to minimize net present cost (NPC). The mathematical models were 

implemented in the General Algebraic Modeling System (GAMS) 24.2.1 and solved with the MINLP solver 

DICOPT using CONOPT 3 and CPLEX 12.6 as nonlinear programming (NLP) solver and MILP solver, 

respectively. The default options were used for all solvers. The CPU times are reported corresponding to 

runs performed in Notebook PC Model SVS15135CHB with Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz 

processor and 4.00 GB of ram memory. The results shown in this paper are the screened results where 

the heat exchangers with no heat duty have been removed. 

Table 1: Stream data 

 

Table 2: Utility data 

Stream FCp Tin Tout h 

  (kW/°C) (°C) (°C) (kW/m
2
-°C) 

H1 98.19 -14.74 -37.78 1.35 
H2 794.90 9.24 6.17 8.48 
H3 4,421.41 53.20 51.27 0.80 
H4 145.99 83.28 52.00 0.80 
H5 321.20 58.48 52.00 0.80 
H6 8.18 171.10 91.42 9.50 
H7 90.03 -39.21 -48.21 0.80 
H8 276.10 33.00 -40.00 11.05 
H9 89.18 50.00 26.82 2.36 
H10 6.54 95.65 26.11 1.96 
H11 24.13 72.47 26.11 2.35 
H12 15.55 49.29 26.11 0.62 

     C1 13.78 15.10 85.50 11.05 
C2 271.91 67.64 80.90 0.10 
C3 1,171.93 164.30 170.10 1.96 
C4 723.88 99.67 106.70 0.33 
C5 196.32 82.85 86.17 0.34 
C6 3,255.13 -39.59 -38.59 0.62 
C7 13.77 -20.22 22.78 0.33 
C8 7.05 -50.00 5.00 2.36 
C9 147.80 -53.33 21.67 0.80 
C10 81.82 -42.33 26.67 0.80 
C11 172.61 21.67 44.85 0.80 

 

 
 

Utility Tin Tout h 

 
(°C) (°C) (kW/m

2
 °C) 

HU1 250.00 180.00 0.337 

CU1 -55.00 -54.00 0.620 
 

Table 3: Cost data 

 
 

Cost Data   

CU1 $/kW d 0.066 

HU1 $/kW d 0.033 

Heat exchanger cost $ 4,838.50 + 68.5A 

Splitting cost $/split 20,000 

   
Project life time y 20 

Interest rate % 10 

Yearly operating days d/y 350 

EMAT 

(exchanger minimum 

approach temperature) 

°C 3 
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4. Result and discussion 

The result of targeting step is shown in Table 4 and Figure 3. The optimal HRAT was 4.9 °C corresponding 

to the best NPC of $ 5,228,430 and the hot and cold pinch temperatures of 72.54 °C and 67.64 °C. Note 

that NPC in the first step was calculated based on vertical heat transfer and minimum number of heat 

exchangers. 

The Hot and Cold Pinch temperatures were then used for HEN synthesis in the second step getting the 

result as shown in Table 5 and Figure 4. The computational time is reasonable (13,294 s or 3 h 41 m 34 

s). The utility load is identical because the HRAT was fixed at the same value. The number of heat 

exchangers is larger than the minimum number of units about one unit predicted by targeting step. The 

area of heat exchangers is slightly more than the predicted one because of non-vertical heat transfer in the 

actual network. This ensures the reliability of the predicted HRAT.  

The designed HEN was then improved in the last step, as the result shown in Table 6 and Figure 5. It 

required very short computational time because the topology, involving binary variables, was controlled in 

the optimization reducing the problem size. With a penalty of heat exchanger area, utility load and number 

of heat exchangers were decreased giving the better NPC. According to the previous step, two of heat 

exchangers were disappeared (E12 and E16); as a result, the total number of heat exchangers is more 

than the minimum number of heat exchangers of HEN without pinch based on Euler’s general network 

theorem (24 units) about one unit. It can be noticed that there is no splitting in the HEN because of the 

expensive splitting cost. 

 

Table 4: Summary report of targeting step 

 

 

 

Pinch Analysis results   

Optimal HRAT °C 4.9 

Hot pinch temperature °C 72.54 

Cold pinch temperature °C 67.64 

Optimal cooling utility load kW 17,441 

Optimal heating utility load kW 14,019 

Optimal number of heat exchangers Units 26 

Optimal total vertical area m
2
 4,294.6 

Payback period y 0.43 

   NPC (Objective function) $ 5,228,430 

 

 
Figure 3: Composite Curves at optimal HRAT 

Table 5: Summary report of HEN synthesis step  Table 6: Summary report of HEN improvement step 
 

Stage-wise model with pinch temperature results 

Number of cycle cycles 2 

Total CPU time s 13,294 

Average CPU time per cycle s/cycle 6,647 

   HRAT °C 4.9 

Total cooling utility load kW 17,441 

Total heating utility load kW 14,019 

Total number of heat exchangers Units 27 

Total area of heat exchangers m
2
 6,275.6 

Total splitting splits 0 

Total number of splits splits 0 

Payback period y 0.58 

   NPC (Objective function) $ 5,368,967 

 
 

Stage-wise model with topology control results 

Number of cycle Cycles 2 

Total CPU time s 2 

Average CPU time per cycle s/cycle 1 

   HRAT °C 4.4 

Total cooling utility load kW 17,350 

Total heating utility load kW 13,928 

Total number of heat exchangers Units 25 

Total area of heat exchangers m
2
 6,551.8 

Total splitting splits 0 

Total number of splits splits 0 

Payback period y 0.58 

   NPC (Objective function) $ 5,351,506 
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5. Conclusion 

The strategy for HEN synthesis was presented in this paper. The method consists of three steps; targeting, 

HEN synthesis and HEN improvement. From this study, it can be concluded that the heuristics from Pinch 

Analysis can help mathematical optimization to generate the good HEN solution for large-sized problem 

with reasonable computational time requirement. The study also proves that the relaxation technique can 

help reduce the complexity of HEN. Therefore, the proposed strategy is the effective method for HEN 

synthesis, even for industrial problems. For future work, non-isothermal mixing should be taken into 

account in the HEN improvement step to get more possibility of better solutions. 
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Figure 4: Grid diagram of GSP2 case study from HEN synthesis step 
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Figure 5: Grid diagram of GSP2 case study from HEN improvement step 
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