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treatments (Shen and Yoshikawa, 2013). Among the chemical treatments catalytic reforming of tar into gas 
is one of the most promising, allowing the enhancement of the syngas quality increasing the amount of CO 
and H2 (Peres et al., 2013). Another important issue is to lower the CO2 content of the syngas in order to 
increase its calorific value. In this context the dry reforming represents an interesting solution since tar 
reacts with CO2 to produce CO and H2. The dry reforming was widely analysed in literature for the 
conversion of the biogas (mainly constituted by methane and carbon dioxide) into syngas and different 
catalysts have been tested (Fan et al., 2009). Nickel has been extensively used for catalytic reforming, 
however it is well known that it suffers from carbon deposition (Wang et al., 2011). 
In this work the reforming of the tar produced by the pyrolysis of the residue of olive oil extraction over 
bimetallic nickel and cobalt catalyst promoted by cerium was studied in a two-stage bench scale reactor. 
The objective was to convert the tar into fuel gas, mainly CO and H2, using as reforming agents the non-
combustible compounds produced by the pyrolysis and gasification of the biomass, CO2 and water. 
Cerium was added as a promoter since Ce improves the resistance to carbon deposition (Chen et al., 
2013). The influence of two different supports, γ-Al2O3 and activated carbon (AC), on the process 
efficiency was evaluated. To better understand the reforming and the catalyst performances, experimental 
tests on methane and tar model compounds such as n-heptane and benzene were conducted.  

2. Experimental section 

2.1 Catalyst preparation 
 
The γ-alumina supported Ni-Co/Ce catalyst (Ni-Co/Ce Al2O3) and the activated carbon supported Ni-Co/Ce 
catalyst (Ni-Co/Ce AC), both containing 10 wt% Ni, 3.33 wt% Co and 3.33 wt% Ce, were prepared by wet 
co-impregnation of commercial γ-Al2O3 (SBET=230 m2/g, pore volume=0.66 cm3/g) and activated carbon 
(Acquacarb 207EA; SBET=950/1100 m2/g, methylene blue number=180-230, iodine number=900/100 
mg/g), using an aqueous solution of Ni(NO3)2.6H2O, Co(NO3)2.6H2O and Ce(NO3)3.6H2O. The wet solids 
were dried at 105 °C for 24 h under vacuum. The Ni-Co/Ce Al2O3 was calcinated for 6 h (2 h at 500 °C, 2 h 
at 600 °C and 2 h at 700 °C). To decompose the precursors of the active phase the Ni-Co/Ce AC was 
heated under a nitrogen flow with the same temperature program of the Ni-Co/Ce Al2O3. Before use, the 
catalyst were activated in situ in 0.5 NL/min flow of 50 % H2/N2 at 550 °C for 1 h and then held at 750 °C 
for 2 h. 
 

2.2 Experimental setup 
 
To test the catalysts performances, CH4 and tar model compounds (n-heptane and benzene) dry reforming 
experiments were conducted on a laboratory scale plant. The plant consists of a feed section, of a tubular 
quartz reactor (i.d.= 0.8 cm, l= 25cm, heated by an external cable heater and equipped by a porous quartz 
disk to support the catalyst bed) and of a condenser to recover the condensable (unreacted heptane and 
benzene and the water that can be produced by the reverse water gas shift reaction). Tar model 
compounds are introduced in the gas stream by means of a saturation unit, controlling their flow rate by 
changing the saturation temperature. The gas composition is measured with a gas chromatograph. The 
experimental conditions used for both the catalysts are reported in Table 1. For the n-heptane and the 
benzene the inlet flow rate are chosen in order to obtain the 15 % of CO2 in excess respect to the 
stoichiometric value. 
 
Table 1:  Experimental conditions used in the preliminary tests. 

 CH4 n-heptane benzene 
T (°C) 550;650;725;800 650;725;800 700;750;800 
Gas flow rate (NL/min) 0.5 0.5 0.5 
Feed gas composition    
CH4 (%vol) 25 - - 
CO2 (%vol) 25 40 40 
N2 (%vol) 50 60 60 
Mass flow rate (g/min) - 0.15 0.1 
Catalyst bed height (cm) 2 2 2 
Catalyst amount (g) 2 2 2 
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The tests on the tar produced by the olive residue biomass were conducted in a two-stage tubular quartz 
reactor (i.d.=4 cm; l=70 cm), shown in Figure 1.  

 

Figure 1: Tar reforming experimental setup. 

In the first stage the biomass pyrolysis occurs, the produced gas and tar, then, pass through the second 
catalytic stage, where the reforming reactions take place. A layer of quartz wool, 5 cm height, divides the 
two sections of the reactor. The catalyst is loaded into the reactor over a porous quartz frit. The two 
sections are heated by two independent external cable heaters. The temperature of the catalyst bed is 
continuously measured by a K-type thermocouple, which is fitted in a small quartz pipe, placed in the 
center of the bed. The biomass is fed on the top of the reactor with a piston system at regular intervals of 
time in order to assure the continuity of the process. The solid is loaded for 30 min after the catalyst bed 
was heated to the set temperature. The produced gas passes through a series of water-cooled traps to 
condense the unreacted tar and then is sent to an on-line gas analyzer (Simens Ultramat 23) to measure 
the concentration of CO, CH4, CO2 and H2. In all the tests nitrogen flow of 0.5 NL/min was fed above the 
biomass bed. In Table 2 the list of the operative conditions is reported.  
 

Table 2:  Experimental conditions used in the tar reforming tests. 

 Ni-Co/Ce Al2O3 Ni-Co/Ce AC
T reforming(°C) 750 750 
T pyrolysis (°C) 550 550 
N2 Gas flow rate (NL/min) 0.5 0.5 
Biomass flow rate (g/min) 2.5 2.5 
Catalyst bed height (cm) 5 5 
Catalyst amount (g) 10 10 

 

3. Results and discussion 

3.1 Tar compounds results 
 
The experimental tests were conducted at different temperatures in order to study the behaviour of the dry 
reforming reaction as a function of temperature and to calculate the kinetic parameters. 
The reactions of dry reforming are reported below for the methane, n-heptane and benzene, respectively. + ⇔ 2 + 2       (Eq.1) + 7 ⇔ 14 + 8      (Eq.2) 
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+ 6 ⇔ 12 + 3      (Eq.3) 

All these reactions are endothermic and so are promoted at high temperatures.  
Other reactions occur during the process such as the reverse gas shift reaction, the reverse Boudouard 
reaction and the cracking reaction, which is the major responsible of coke deposition on the catalyst and of 
its deactivation. The occurring of the cracking reaction is promoted at temperature higher than about 550 
°C, that is when the equilibrium constant becomes greater than 1 for the methane decomposition reaction 
(Chen et al., 2013). To avoid the carbon deposition it is, thus, preferable to work at temperature higher 
than 700 °C, that is when the reverse Boudouard reaction becomes thermodynamically favoured. 
The conversions, X, were calculated as: =     (Eq.4) 

where Cin and Cout are the inlet and outlet compound concentration, respectively. 
The results obtained with the methane are reported in Fig. 2 for both the catalysts. It can be noted that the 
Ni-Co/Ce Al2O3 is more active with respect to dry reforming, leading to conversion of about 90 % at 800 
°C. Ni-Co/Ce AC shows a much lower activity, reaching a maximum conversion of 41 % at 800 °C.  
 

 

 Figure 2: Dry reforming methane conversions as a function of temperature for both the catalysts.  

 
In the Table 3 the results of the dry reforming of n-heptane and benzene at the different temperatures are 
reported. The results show the same behaviour observed for the dry reforming of methane, the activated 
carbon supported catalyst is less active and the conversion values are much lower. The conversion of n-
heptane at 650°C is higher than that of methane at the same temperature. The methane molecule, in fact, 
is more stable and needs higher temperature to be broken. This result is also confirmed by the value of the 
kinetic parameters (Table 4); the Arrhenius pre-exponential factor for methane is higher than that for n-
heptane. It means that at lower temperature the reaction is faster for n-heptane. 
The results of the experimental tests on the benzene at 650 °C are not reported since at this temperature 
the quartz disk is immediately obstructed by the coke formation, so the results are shown for temperature 
higher than 700 °C.  
 

Table 3:  Conversion values of the dry reforming of n-heptane and benzene. 

 T (°C) Ni-Co/Ce Al2O3 Ni-Co/Ce AC
n-eptane 650 63% 23% 

725 72% 31% 
800 78% 36% 

Benzene 700 44% 16% 
750 52% 22% 
800 65% 28% 
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The apparent kinetic parameters were carried out as (Fuentes-Cano et al., 2013): − =     (Eq.5) = 	( )
                                                                                                                                        (Eq.6) 

where rapp is the rate of conversion [kmol/m3 s], kapp is the apparent kinetic constant [1/s], Ci is the 
compound concentration [kmol/m3], X is the conversion and τ is the resident time in the catalyst, calculated 
as: = ,( , )                                                                                                                                               (Eq.7) 

where VR,cat is the of catalyst bed volume with respect to the volume of empty reactor and Qin(T,P) is the 
inlet volume flow rate.  
The kinetic parameters are reported in Table 4 only for the Ni-Co/Ce Al2O3 catalyst, which is the most 
active. 
 

Table 4:  Kinetic parameters using Ni-Co/Ce Al2O3 and τ=0.6 s. 

 A (1/s) E (kJ/mol) 
CH4 22471 76 
n-heptane 33 24 
Benzene 608 57 

 

3.2 Tar dry reforming 
 
In the tar dry reforming tests the catalyst bed is held at 750 °C since this temperature seems to be 
sufficient to obtain a quite good conversion of the aromatic species contained in the tar as it can be 
deduced from the tests performed on the benzene. In Table 5 the amounts of tar produced with the two-
stage reactor are compared with that obtained with the traditional one-stage fixed bed pyrolysis. For the 
Ni-Co/Ce Al2O3 catalyst the tar percentage decreases when the second stage is used by up to 78 % 
weight. The activated carbon supported catalyst leads to a minor reduction of about 56 %, as expected. 
 

Table 5: Tar weight fractions. 

 Tar (wt. %) 
Pyrolysis 16.1 
Ni-Co/Ce Al2O3 3.5 
Ni-Co/Ce AC 7.2 

 
 
The gas composition is reported on Fig. 3. The use of the second stage allows an improvement of the gas 
quality. In fact, the CO2 concentration decreases, lowering the syngas dilution. With Ni-Co/Ce Al2O3 
catalyst the fraction of H2 raises of about 50 % due to the occurring of dry reforming and steam reforming 
reactions. During the steam reforming the tar reacts with the water produced by the pyrolysis to form 
hydrogen and carbon monoxide. This result is confirmed by the decrease of the water content of about 9% 
in the products, this reduction of water is not observed with the activated carbon supported catalyst.  
Furthermore with both the catalysts the CO fraction increases considerably. It must be noted that in the 
case of activated carbon supported catalyst the CO concentration increases without a significative 
increment of H2 concentration, this can be justified by the Boudourd reaction, which consumes the carbon 
of the support.  
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