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High fuel price coupled with the requirement to reduce the use of fossil fuels has created the interest to 
use low calorific value gases. Fuelling lime kilns with renewable fuels to displace fossil fuel is not a new 
idea and has been subject of many studies and projects. Various alternative renewable fuels have been 
introduced or studied for use in lime kiln including Wood pyrolysis oil, Waste Oil, Chipped tiers and Solid 
fuels (i.e. Residue Derived Fuel - RDF). A new idea is the application of synthesis gas in lime kilns where 
the gas originated from RDF feedstock. The synthesis gas, also known as “Syngas”, is generated with a 
plasma gasifier fed with RDF. Raw Syngas resulted from a plasma gasifier is free from tar and has low 
dust load in comparison with the other gasifier types (circulated fluidized bed and bubbling fluidized bed), 
but still other contaminants (i.e. ammonia, chlorine, heavy metal and dust) in Syngas have to be polished 
out before introducing into the lime kiln. To launch renewable Syngas fuel, the raw Syngas generated from 
plasma gasifier must be cleaned from contaminants to meet process requirements and pollution control 
regulations. 
This paper discusses about plasma gasification process simulation, cleaning scheme development to 
mitigate contaminants in raw Syngas to produce clean Syngas also technical issues due to change over 
from existing fuel gas to syngas fuel. 

1. Introduction 
Solid waste is generated in large volumes worldwide and it has significant impact on the environment. The 
impacts directly relate to atmospheric emissions and effluents from landfills. High fuel price along with the 
requirement to reduce the use of fossil fuels leads to find out opportunities for securing the cleaner 
supplies. The clear challenge is to achieve an economically viable solution to reduce fossil fuels 
consumption by substitution with green energy sources.  
Many adverse impacts may occur from landfill operations (such as off gassing of methane generated by 
decaying organic waste, contamination of groundwater and/or aquifers and residual soil 
contamination during landfill) so it is expected that these landfills will become more and more restricted by 
the regulators.  
Municipal solid waste thermal treatment (Thermochemical processes) has been subject of several studies 
in scientific literature which are based on the incineration (Lam et al., 2012), pyrolysis Bosmans et al., 
2010), thermal treatment in general (Themelis, 2007) and gasification processes (Darley, 2004).  
Gasification can be broadly defined as the thermochemical conversion of a solid or liquid carbon-based 
material into a combustible gaseous product (synthesis gas). This is accomplished by the supply of a 
gasification agent (steam, air, enriched air, oxygen) at a high temperature (Belgiorno et al., 2003). In the 
gasification process, the feedstock transforms into a synthesis gas composed primarily of H2, CO, CO2, 
H2O, CH4, N2 and C2

+.  
Among many types of gasification processes, recently plasma gasification drew many researchers and 
process developers’ attention for waste conversion (Achinas et al., 2013). The plasma gasification is an 
interesting choice for waste conversion due to its flexibility (Arena, 2012), accepting different types of feed 
with wide range of composition and moistures (Fabry et al., 2013), no tar or very low tar containing 
synthesis gas (Minutillo et al., 2009), almost complete carbon conversion and non leachable bottom slag.  
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Because of the high temperatures involved, all the tars, char and dioxins are broken down. The exit gas 
from the reactor is cleaner, and there is no ash at the bottom of the reactor (Mountouris et al., 2005). The 
main disadvantage of plasma gasification is the high electric power consumption in the plasma torch and 
the low (atmospheric) operating pressure of the reactor.  

2. Model Development 
Waste gasification process modelling has been developed by different researchers. All the gasification 
reactions, with the exception of the oxidation ones (Molino et al., 2013), have been considered equilibrium 
reactions (Arena, 2012). 
Based on experiments at high operating temperature, higher than 1200 °C, and enough residence time, 
i.e. for the solids it is about 1-2 h and for gas phase 2-4 s, are sufficient for chemical equilibrium to be 
attained (Mountouris et al., 2006). 
A nonstoichiometric equilibrium model is consequently selected to model the plasma gasifier. In 
nonstoichiometric modelling, no knowledge of a particular reaction mechanism is required to describe the 
system. In a reacting system, a stable equilibrium condition is reached when the Gibbs free energy of the 
system is at the minimum. So, the method is based on minimizing the total Gibbs free energy. The method 
is particularly suitable for fuels like RDF, the exact chemical formula of which is not clearly known. 
The Gibbs free energy, Gtotal for the gasification product comprising N species (i = 1…N) is given by 
 G୲୭୲ୟ୪ = ∑ n୧୒୧ୀଵ ∆G୤,୧୭ + ∑ n୧୒୧ୀଵ RTln ቀ ୬౟∑୬౟ቁ (1) 

 
Eq(1) is to be solved for unknown values of ni to minimize Gtotal, it is subject to the overall mass balance of 
individual elements. Irrespective of the reaction path, type, or chemical formula of the fuel, for each jth 
element we can write total mass balance and they should be solved simultaneously with Eq (1). 
 ∑ a୧,୨n୧ = A୨୒୧ୀଵ   (2) 

 
Where ai,j is the number of atoms of the jth element in the ith species, and Aj is the total number of atoms of 
element j entering the reactor. The value of ni should be found such that Gtotal will be minimum. 

2.1 Plasma Gasification Modelling 
The plasma gasification process has been simulated in Aspen Plus V8.0. Figure 1 shows the unit 
operation model assembly to describe the plasma gasifier. Similar model configuration has been published 
for RDF (Minutillo et al., 2009) and Shredded tires, plywood and coal (Valmundsson et al., 2011). Main 
process blocks are described in Table 1. 

 

Figure 1: Plasma gasification reactor model assembly 
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Table 1:  Model main blocks description 

Block Name Block Type Description 
DECOMP RYIELD Converts RDF into the constituent

WATDRYER COMP SEPARATOR Separates water
SLAGSPLIT COMP SEPARATOR Separate ash
TORCH HEATER To give electrical heat to plasma
HTR RGIBBS Gibbs reactors to calculate

chemical equilibrium condition byLTR 
HEX1 

HEATER Heat exchanger HEX2 
HEX3 
MELTER 
MIX MIXER Streams mixer 
MIX1 
SPILWAT SPLITTER Stream splitter

 
The heat source for the whole process is an arc plasma torch which is modelled by “TORCH” heat 
exchanger. In order to validate gasification process model the refused derived fuel used by (Minutillo et al., 
2009) is tested using pure air as the plasma gas. The reactor is operated at atmospheric pressure and the 
mass ratio of plasma gas to feedstock is 0.82. The composition of the feedstock is given in Table 2. A 
comparison between the model results and those obtained by Minutillo et al., 2009 are summarized in 
Table 3. The results show that the non-stoichiometric model gives a good match for plasma gasification 
reactor. 

Table 2: RDF definition                                            Table 3: Plasma gasifier output 

Proximate analysis (wt%) Composition Minutillo et al. Simulation 
Moisture 20.00  H2 0.2104 0.2168 
Volatile matters (dry) 75.95  CO 0.3379 0.3333 

Fixed carbon (dry) 10.23  CO2 0.0000 0.0000 
Ash (dry) 13.82  N2 0.2697 0.2684 
Ultimate analysis (wt%)  CH4 0.0597 0.0502 
C 48.23  H2O 0.1168 0.1171 
H 6.37  HCl 0.0032 0.0031 
N 1.22  H2S 0.0022 0.0021 
Cl 1.13  COS 200 ppm 150 ppm 
S 0.76  HCN  0.006 
O 28.48  Ar  0.003 
Ash 13.81  LHV 9.55 9.49 

   

2.2 Raw Syngas Cleaning 
Waste plasma gasification generates a raw gas that requires considerable cleaning, removing particulate 
and several vapour-phase contaminants to very low levels before the gas can be used in applications such 
as power generation, fuel/chemical synthesis and even burning in the furnace or kiln. The gas clean up 
process for a system is generally determined by the composition of the syngas exiting the plasma gasifier, 
the clean up requirement for the intended use and environmental considerations. One of the specific 
usages of syngas is burning in the lime kiln and phasing out for economic reasons the fossil fuels as 
shown in Figure 2. In this situation by providing syngas to the plant, the LPG fuel is phased out from plant 
fuelling and the produced COG (Coke Oven Gas) will be sufficient for other units in the plant. As a 
consequence the LPG is not required anymore. 
    
 
 
 
 
 
 
 
 
 
 
A) Existing Fuelling Scheme                                           B) Future fuelling scheme 

Figure 2: Plant fuelling schemes 
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By using above gasification model and introducing a new RDF and pure oxygen as an oxidant instead of 
air into the plasma gasifier model, the resulted syngas will have less nitrogen percentage (compared to 
table 3). Table 4 shows the replaced COG and raw syngas (before cleaning) specifications. 

Table 4: COG and Raw Syngas fuel specification                                        Table 5: Clean Syngas Fuel 

Composition (mol) Existing COG to 
lime kiln plant 

Raw Syngas 
(Model)

  Composition 
(mol)

Clean Syngas 
(Model) 

H2 0.60 0.319   H2 0.421 
CO 0.05 0.331   CO 0.440 
CO2 0.02 0.041   CO2 0.053 
N2 0.07 0.046   N2 0.062 
Ar N/A 0.006   Ar 0.008 
CH4 0.24 33   CH4 45 ppmw
C2H4 0.02 N/A   C2H4 N/A 
H2O Saturated 0.249   H2O 0.016 
HCl N/A 0.006   HCl < 1 ppmw
H2S 628 1319 After 

Cleaning 
H2S 161 ppmw

COS N/A 109 COS 91 ppmw
HCN N/A < 1   HCN < 1 ppmw
NH3 42 ppmw 7   NH3 < 1 ppmw
Tar 1070 N/A   Tar N/A 
Dust 5 mg/m3 18.6   Dust < 5 mg/m3

LHV (MJ/kg) 37.06 9.97   LHV (MJ/kg) 12.66 
Temperature 18 850   Temperature 18 
Pressure 1.3 1.01   Pressure (Bara) 1.3 
Flow (kg/h) 3495 13696   Flow (kg/h) 10231 

 
A cold gas cleaning scheme is selected because there are mature technologies in this type of cleaning 
scheme. Also the syngas has a low pressure and the fuel gas pressure shall be increased by compressor 
before entering into the lime kiln plant. Therefore it needs to be cold syngas, so benefit of hot fuel gas 
production by hot / mild cleaning schemes are not anymore applicable. 
According to Table 5, the following steps shall be carried out to prepare Syngas fuel for lime kiln plant: 

 

Figure 3: Raw syngas cleaning scheme 
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900 ˚C to 905 ˚C in order to keep the calcination reaction rate unchanged. The calculated temperature 
increase is not a significant step and the new fuel gas is able to generate a higher adiabatic flame 
temperature and compensate the required increase in reactor temperature. Also this small temperature 
increase in reactor will not have major effect on reactor body material and downstream material integrity.  

5. Conclusions 
One of the major concerns of burning syngas in lime kilns is its lower heating value compared to existing 
fossil fuel. The low heating value implies that more fuel is required to achieve the heating rate, but not 
necessarily leading to higher amounts of exit flue gas going to the flue handling system. Main Conclusions 
from this study is listed hereafter: 

• Non-stoichiometric equilibrium model is able to model plasma gasification reactor. 
• Mature technologies are available to clean up the raw syngas fuel. 
• Flue gas volumetric flowrate of Syngas fuel is about 10 % less than the COG fuel then no 

required to change lime kiln downstream facilities. 
• Syngas has higher AFT (about 100 ˚C) than the COG fuel. Therefore will not impose any 

limitation to reach the required calcination temperature. 
• Input syngas volumetric flowrate is about 1.6 times higher than the COG volumetric flow. 

Therefore the lime kiln input facilities including fuel piping, control valves, compressor, and burner 
lances shall be checked for the new fuel gas. 

• Combustion air flow will be 82 % of the existing combustion air flowrate. The combustion air fan is 
expected to work without problem. 
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