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The increasing complexity of chemical processes, in terms of technological involvement, intensified with 
automation, has made the role and job of industrial operators more significant in terms of Process Safety. 
This work takes the concept of Distributed Situation Awareness (DSA), introduced by Stanton et al. (2006), 
and presents its application, adaptation, and influence on the process industry in general and on industrial 
operators in particular. DSA considers the importance of viewing the system as a whole by considering all 
the parts in the environment. The combination and interaction of different elements including field 
operators, control room operators, the artifacts with which they interact with each other and with different 
bits of information/data, and the communication among them are the basis on which the DSA of industrial 
operators founds. The decisions made by the operator are not only based on his/her understanding and 
mental model but they include the whole system. The paper shows how studying the operator as an 
individual only is not sufficient. Conversely, a holistic approach allows gathering most of the nuances of 
complex systems as the industrial plants are. A measurement method for DSA is proposed and a case 
study, i.e., a refinery sub-section, aimed at identifying and devising specific DSA indicators, is presented. 
This work can help in reducing abnormal situations, near misses, and accidents arising from errors related 
to operators and their interaction with other operators and with various elements of the process industry. 

1. Introduction 

Since the beginning of industrial revolution in the 17th century, the growth of industries has never looked 
back (Ashton, 1948). Only in Europe in 2011, 539 billion euros was the revenue generated from the 
chemical industry, with about 1.1 million of employees (CEFIC, 2012). The growth and advancements in 
construction, equipment, unit operations, unit processes, and methods improved steadily with time. The 
last two decades have seen tremendous growth in technology and the nature of the processes have 
changed also. Increase in demand, production, and associated economic benefits encouraged the 
expansion of chemical, petrochemical, and refinery plants to expand their capacity. At the same time, 
several new humongous chemical plants emerged in different parts of USA, Europe, and later South 
America and emerging Asian countries. The growing capacities of chemical plants together with 
technological and automation integration resulted in new challenges, which were unforeseen by 
stakeholders, engineers, and designers. New terminologies found their way into the dictionaries of 
chemical industry, not in terms of only technical aspects, but from the perspective of the human (operator 
in this case). As a result, new challenges emerged, especially for the operators who deal with modern 
technology, contrary to practices in past, when systems were much simpler and less robust. Vicente 
(1999) states that “New Problems Demand New Approaches” (p. 17) and raises doubts concerning the 
human capacity to effectively utilize modern technology by asking “Do we know how to use it?” (p. 19). 
The emergence of automated tools and their overly deployment in chemical industry has changed the 
nature of  operators work. In the past, the systems were analogue and a casual visit at the plant site was 
sufficient to monitor the progress and production of plants. This approach is no longer feasible. The 
operators must stay on their toes to monitor, assess, and understand the incoming information from 
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various sources and act/react accordingly. The decisions made by operators (who are scattered at 
different parts of the plant) define the outcome(s) of possible abnormal situations, near misses, or even 
accident events. Therefore, the study of operators’ behavior and the concepts, which fall under the 
umbrella of human factors, is necessary to make the whole system safer. This paper takes a newly 
developed concept i.e., Distributed Situation Awareness (Stanton et al., 2006) and considers its implication 
in the world of process industry. The paper introduces the significance, impact, and implications of the 
concept of DSA for industrial operators and its relevance to process safety. Moreover, a unique method of 
measuring DSA is proposed and a case study from a refinery is presented for elucidation of the proposed 
measurement method of DSA in industrial operators. 

2. Distributed Situation Awareness 

Consider a system with multiple distributed control units (humans, actuators, automatons, etc.). In order to 
ensure safe and efficient operation one must focus on the interaction and coordination between the control 
units. When the control system involves humans that are able to perceive and understand the meaning of 
elements in the world around them, the system model must also encompass the characteristics of 
humans. Stanton et al. (2006) introduced the Distributed Situation Awareness (DSA) theory to show how 
situation awareness is established and maintained in distributed complex systems. Situation Awareness as 
defined by Endsley (1995) is “the perception of the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the projection of their status in the near future”. The 
main assumption in DSA is that adaptive behavior is achieved through the coordination among system 
units. Hence, the focus of DSA is the whole system as opposed to focusing on the individuals/components 
in the organization (Salmon et al., 2009a, 2009b). Each operator gets a unique personal perspective of the 
world and since work in distributed systems is (usually) highly specialized, there is no need for a fully 
shared understanding of the situation among operators. Distributed Situation Awareness is thus a system 
construct that according to DSA proponents resides in the whole system (Salmon et al., 2009; Stanton et 
al., 2006). Each component/individual has a unique understanding/mental mapping that must be 
compatible (but not identical) with other individuals in order to ensure successful coordination of work 
tasks. The idea of compatibility of individual's situation awareness also fits with the fact that different 
operators have specialized work tasks with their own goals, constraints, and requirements. 

3. DSA and industrial operators 

This work is a first attempt to connect two different domains (DSA and process industry) together as a step 
towards improvement of the performance of operators, which will ultimately result in safer operations. 
Formerly, the concept of Situation Awareness was applied to industrial operators (Nazir et al., 2012). As 
different bits of information are distributed among operators, artifacts, and technological tools, we believe 
that implication of DSA of industrial operators is inevitable. 
Industrial operators can be categorized according to their job location. Operators working in the field are 
called Field Operators (FOPs) and the ones working in the control room are called Control Room 
Operators (CROPs). Both CROPs and FOPs do not work alone and independently but need to engage in 
teamwork by using teamwork skills. Wilson et al. (2007) defined team work as “a multidimensional, 
dynamic construct that refers to a set of interrelated cognitions, behaviors and attitudes that occur as team 
members perform a task that results in a coordinated and synchronized collective action” (p. 5). During 
normal operations, there is periodic communication for collaborative actions between FOPs and CROPs to 
assure continuous and safe operations. The significance of this communication is much higher once 
uncertainties are introduced to the system and the operations get out of the normal operating domain. In 
case of abnormal situations, the sensitivity and impact of such a communication increases significantly. 
For example, an abnormality observed by a FOP, using his/her physical senses, must be reported to the 
CROP for necessary actions and/or instructions. The communication in this scenario is not only a matter of 
delivering a message but to weigh, analyze the problem/malfunction, and reach correct and timely 
decisions (Nazir et al., 2012). The ultimate consequences of abnormal situations or accidents depend on 
the shared understanding, compatibility, and effective communication among operators. There are also 
cases where the communication among operators is intentionally avoided due to consolidated habits that 
are originated by either unsafe company policies or precarious equipment features. This was the case of 
the BP Texas refinery accident occurred in 2005 (Manca and Brambilla, 2012) where both FOPs and 
CROPs ignored that the liquid inside the column was accumulating dangerously because of a persistent 
misleading measurement that made them neither consider nor rely on the faulty data measured in the field. 
A clear and shared mental model and joint cognition can facilitate such communication and the 
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subsequently necessary actions (Nazir et al., 2012). It is necessary for operators to monitor recurrently the 
dynamics of the process and to make timely correct decisions based on their mutual comprehension 
deduced from the available information that is changing dynamically. At the same time, FOPs and CROPs 
are physically distant and surrounded by completely different environments and information. Under these 
conditions, the distributed nature of information is coordinated by using artifacts such as walkie-talkies to 
achieve a shared and consistent cognition. Different elements of the system that contribute to the DSA are 
called agents. Each distributed agent contributes to the DSA of the operator. Interestingly, the contribution 
of each agent in the system has a different impact and developing a suitable comparison methodology to 
determine the weight of these agents to DSA is a topic yet to be explored. The contribution of each agent, 
constituting DSA, changes dynamically as per the dynamics of the system or operations. Similarly, during 
non-routine tasks, for instance start-ups, shutdowns, and maintenance work, the agents, which contribute 
to the DSA of operators, can be completely different respect to those required under normal operating 
conditions. Developing a method to evaluate the DSA is complex but at the same time important and 
effectual. 

4. Measurement of DSA 

Measuring systemic constructs such as DSA is a challenging task as it focuses on the interaction among 
multiple actors and control units. The provision of good situation awareness has seen its implementation in 
the design of systems and the assessment of system performance (Salmon et al., 2009b). One reason that 
can encourage process designers to modify systems for an improved SA is the possibility of measuring SA 
both quantitatively and qualitatively (Endsley, et al., 2003). Hence, it is of paramount importance to know 
how one can measure/assess DSA. To describe and evaluate the DSA of whole systems, Salmon et al., 
2009b, proposed the use of semantic or propositional networks that show the connection between 
concepts that are of relevance to the work task in question. 
In a recent article Sorensen and Stanton (2013) measured DSA in 60 five-person teams through the use of 
a communication analysis that built upon the propositional network methodology. In that study they 
measured DSA by measuring the amount of relevant concepts that where communicated by the team 
members during a simulated Command and Control task where the aim was to identify and take red 
("enemy") players while avoiding taking non-red (allied) players. They found a very high positive correlation 
(r = 0.923, p < 0.001) between the number of relevant concepts communicated and the number of taken 
red players. Indicating that communication of relevant concepts might be a good indicator of DSA. 
Sorensen and Stanton (2013) also found a negative correlation (r = -0.520, p < 0.01) between measured 
DSA and the erroneous taking of non-red ("fratricide") indicating that high DSA was a barrier against 
errors. In short, Sorensen and Stanton's article showed that communication logs are a viable approach to 
measuring DSA. A recent study, suggests that evaluation of SA can be considered as a learning outcome 
(Sorensen and Stanton, 2013). According to the authors, nature of process industry, multilevel complexity, 
interconnections, boundary conditions, operating constraints, control algorithms, nature of job of operators, 
and distribution of teams call for a different approach to DSA assessment of industrial operators. The DSA 
of an industrial operator can be evaluated by defining specific performance indicators satisfying the 
concept and theory of DSA, which we call Distributed Situation Awareness Indicators, DSAIs. The 
proposed indicators, which allow evaluating the DSA of operators, can be implemented in a computer 
algorithm for real time analysis (for details see Manca et al., 2012, 2013). However, developing a general 
methodology for measurement of DSA still seems far from complete, as every industrial process is 
composed of various and diverse elements. Therefore, while developing a DSA measurement algorithm 
different agents/factors should be considered. For the scope of this paper, only the following are 
emphasized: team structures, complexity and nature of the process, safety constraints, operating 
conditions, and the involved artifacts. 

4.1 Team structure 
The impact of team structure and its effect on performance and coordination have been studied in 
command and control and aviation sector (Alberts, 2003). Nevertheless, the importance of team structure 
is equally important for the process industry. Sorensen and Stanton (2013) demonstrated the influence of 
different structures of teams and their impact on the performance. The teams in process industry can be 
categorized into FOPs-FOPs, CROPs-FOPs, CROP-CROPs, CR/FOPs-non-technical staff (Nazir et al., 
2012). 

4.2 Complexity and nature of industrial process 
Different chemical processes demand different sets of communication among FOPs, CROPs and other 
non-technical team members. Moreover, the frequency of such communication is also a function of nature 
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of plant, interconnections among various components and control loops, area of the plant, type of 
operations (e.g., refineries, fertilizer, power, nuclear , and polymer plants) and location of the plant (either 
on-shore or off-shore). The relative significance of communication also changes with the nature of the 
process and the distribution of different plant subsections, and equally the DSA of operator that should be 
considered while devising the respective indicators. 

4.3 Safety constraints 
Safety constraints are important parameters in defining the indicators for DSA. They have a close 
correlation with the complexity and nature of the plant. At the same time, geographical location and safety 
culture are also involved in defining such constraints. The challenge here is to identify those indicators that 
refer to the process safety and at the same time that are responsible for constituting the DSA of operators. 

4.4 Operating conditions 
Complexity of chemical processes, safety constraints, and operating conditions are interwoven with each 
other. Therefore, they cannot be considered individually. As mentioned before, the DSA of operators 
changes according to the operating conditions. Abnormal situations and accident events must be dealt 
with a different mindset as compared to normal operating conditions. Therefore, defining separate 
measurement indicators for DSA for both scenarios is necessary (i.e. normal vs abnormal). It is noteworthy 
that the operating conditions, which are deemed optimal during normal operating conditions, can be 
alarming during abnormal situations or non-routine tasks (like start-ups and shutdowns). 

4.5 Artifacts 
The interaction of the operator with different tools, information inputs, and sources makes this parameter 
extremely important and significant. A modern industrial plant consists of large DCSs, hundreds if not 
thousands of control loops, multilevel interconnections, which the operators need to observe, understand, 
and optimize. These bits of information are usually equalized and communicated among FOPs and 
CROPs by means of push-to-talk devices (e.g., walkie-talkies). Furthermore, the input sources of 
information vary evidently among FOPs and CROPs as shown in Table 1. The indicators for measurement 
of DSA must account for the artifacts involved in any specific process or chemical plant. 

Table 1: Input sources for CROPs and FOPs. 

  CROPs FOPs 

CCTV (closed circuit television) Spatial representation hints 
Control loops Olfactory hints 
DCS synoptic displays Auditory hints 
Communication with FOP Alarms in the field or coming from CROP 
Alarms issued in the control-room Communication with CROP 
Start-up and shut-down procedures with the 
sequence and timings of actions and commands 

Specific actions required during start-up and 
shut-down procedures 

P&IDs Other visual or observable changes 

Table 2: Steps of the experiment about the accident event simulation. 

Steps Description of the events
1 The FOP is at the C3/C4 separation section of the refinery  
2 The excavator hits a pipe and breaks a flange 
3 The liquid jet is emitted from the ruptured flange and spreads on the ground creating a pool  
4 The pool ignites and generates a fire 
5 The FOP alerts the CROP (who interacts with the FOP) 
6 The CROP closes a remotely controlled valve (from DCS) 
7 The outflow stops but the liquid level in the reboiler starts increasing and reaches the high-level 

alarm 
8 The CROP asks the FOP to open a manually operated valve to decrease the reboiler level and 

then asks to close it back again (to recover the original operating condition) 
9 The reboiler level decreases back to the correct value 

5. Case study 

A case study replicating a real accident in a refinery subsection (i.e. C3/C4 splitter), is discussed to devise 
DSAIs, in the light of aforementioned concepts and proposed DSA measurement methodology. An 
experiment was conducted in order to understand, evaluate, and analyze the impact of training on DSA of 
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operators. The details of the experiment, simulator setup, and scenario are extensively discussed in 
Manca et al., 2013 and Nazir et al., 2013, whereas the specific details about the impact of training on DSA 
and the analysis of results will be presented in a forthcoming paper (Impact of training methods on DSA of 
industrial operators). This manuscript reports a short summary of the steps involved and specifically of the 
DSAIs implemented. The accident scenario requires the operators to communicate and develop a shared 
mental model and reach appropriate decisions to minimize the possible consequences of the accident. 
The main steps of the experiment are summarized in Table 2. 
With reference to the events reported in Table 2, the DSA is constructed by various agents, which change 
dynamically as the accident scenario evolves (see Figure 1). 
 

 

Figure 1: The proposed Distributed Situation Awareness Indicators (DSAIs). 

For sake of simplicity, let us consider the “leakage identification and reporting” DSAI at the top most of 
Figure 1. The operator in the field realizes the leakage in the pipe, where a flammable liquid mixture (i.e. 
C3/C4) is flowing. It is a severe abnormal situation which must be observed carefully in terms of 
understanding the nature of the liquid, and location of the pipe and must be reported to the control room 
immediately, in a clear and intelligible way, for necessary actions. For this case study, the bits of 
information, which add to DSA in the light of aforementioned concepts, are: 

• team structure i.e., FOP-CROP working together; 
• complexity of the process i.e., understanding the nature of the leaking fluid and its location; 
• anticipating the dynamic evolution of the process, i.e. identify the operating parameters that will 

deviate from their optimal range as a consequence of the leakage; 
• safety constraints i.e., flammable liquid and anticipating the possibility of fire; 
• artifacts, i.e. the walkie-talkie used by the FOP to communicate with the control room and the data 

appearing on the DCS, which must be interpreted by the CROP in real time. 

6. Discussions and implications 

The study of DSA of industrial operators possesses more benefits than it apparently shows and may have 
positive long-lasting impacts on the safety of chemical processes. The investigation and analysis of the 
accidents, which took place over past years in the process industry, were focused on equipment failure, 
maintenance issues, and malfunctions (physical). The human role was often overlooked. The outcome of 
this approach resulted in designs, that did not facilitate human factors in general and operator’s DSA in 
particular. Therefore, the DSA implementation allows the designers considering features that facilitate DSA 
of operators and allow operators to perform/react in an improved way, especially when the system crosses 
the normal operating range. Such measures may avert accidents, therefore, the number of accidents per 
year may be reduced, and the subsequent losses (both human and financial). Moreover, consciously 
facilitating operators for improved DSA during normal and abnormal situations in the training phase can 
help in better performance of operators. To achieve this, investigation of DSAIs for various processes can 
be devised and integrated in the training methods. 

DS
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Performance indicators and hierarchical methods for evaluation performance is a recent advancement in 
the domain of training, performance assessment, and industrial safety (Nazir et al. 2012, Manca et al. 
2013). The DSAIs might prove an important step towards embracing these new concepts and 
incorporating them in the safety of industrial processes. Moreover, once DSAIs are experimentally 
validated, their impact will be evident and might encourage the related scientific community, process 
designers, and practitioners to realize its significance. 

7. Conclusions 

This work can be considered as a starting point for investigation of DSA of industrial operators. The link 
between DSA and process industry, and a preliminary identification of DSA indicators are the main 
contributions of this work. Some of the features that can be considered in the development of a 
measurement method for DSA were highlighted. A case study was reported to present and discuss the 
topics that were introduced theoretically. The paper paves the way for the development of models of DSA 
for FOPs and CROPs, the identification of DSAIs for different industrial operations, and weighing criteria of 
DSAIs. The authors are conducting experiments to determine the impact of training on DSA of industrial 
operators and measure their performance during critical events. Once the impact of DSA and its 
implication in the process industry become evident, these features may lead to the adaptation/modification 
of conventional training methods. 
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