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Assessment of likely consequences of a potential accident is a major concern for loss prevention and 
safety promotion in process industry. Loss of confinement on a storage tank, vessel or piping on industrial 
sites could imply atmospheric dispersion of toxic or flammable gases. Gas dispersion forecasting is a 
difficult task since turbulence modeling at large scale involves expensive calculations. Therefore simpler 
models are used but remain inaccurate especially when turbulence is heterogeneous. The present work 
aims to study if Artificial Neural Networks coupled with Cellular Automata could be relevant to overcome 
these gaps. Two methods are reviewed and compared. An example database was designed from RANS k-
ε CFD model. Both methods were then applied. Their efficiencies are compared and discussed in terms of 

quality, real-time applicability and real-life plausibility. 

1. Introduction 

Major industrial accidents are generally characterized by important mass release and huge consequences. 
Bhopal disaster sadly illustrates the impact of dispersion of a toxic gas such as methyl isocyanate (MIC) 
inside and beyond an industrial site. Sharan et al. (1997) showed the importance of both atmospheric 
conditions and topography. Indeed, local characteristics such as presence of lakes near Bhopal had a 
major contribution in transporting the MIC into the city area. Flammable gases emissions are also of 
interest in the studied topic because of the UVCE possibility. The Viareggio accident is a tragic example of 
LPG dispersion. Brambilla et al. (2009) reported the requirement for taking account of congested 
environments in such cases. Indeed, effects of the terrain and obstacles play a major role in gas 
dispersion, due to the eddies, wakes, stagnation and recirculation points they can introduce (Pontiggia et 
al., 2012). 
In this context, it is important for decision maker to anticipate crisis situations by modeling several realistic 
scenarios. Need for operational tools gives important guidelines to create such a model: fast, accurate, 
reliable, easy-to-use and accounting well for obstacles in the simulation. Models presented in this paper 
have been designed to answer these criteria. 

2. Atmospheric dispersion modeling 

Models predicting gas dispersion are abundant. Computation of velocity field and gas dispersion of the 
commodity released is generally done separately. Atmospheric dispersion models use velocity field as an 
input. The main strategies are described hereafter. 

2.1 Flow velocity field determination 
Computational Fluid Dynamics (CFD) first aim is to describe a specific configuration of the flow. It solves 
the Navier-Stokes equations using different kinds of refinement depending of the goal to achieve. 
Reynolds decomposition is usually used. It divides the velocity in mean and fluctuation components. 
Turbulence models are used in order to close the equations system. Computation time, numerical 
convergence and required expertise are the drawbacks of such fineness. Experiments are often needed in 
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order to calibrate coefficients. CFD models require solving continuity, momentum and energy equations 
which is time consuming. 
Semi-empirical models use Monin-Obukhov theory to determine vertical velocity profile. These profiles are 
dependent of the atmospheric stability state. Additionally, Hosker (1984) gives relations derived from 
experiments and theory to model flow behind obstacles. These methods are used to avoid long computing 
time and can be useful in first approach. 
While semi-empirical models can provide quick results, CFD ones preserve consistent results with little 
error margin. In any cases, it is crucial to confront models and experimentations (Meroney, 2004). 

2.2 Turbulent dispersion 
Turbulent diffusion is involved through every turbulent dispersion model with a specific form. Gaussian 
models result from a simplified analytical solution of the Advection Diffusion Equation (ADE) (1). Indeed, 
some assumptions are made on the wind field: it is considered as constant in space and time, turbulence 
is considered isotropic and stationary. Standard deviation coefficients are determined from weather 
stability, and calibrated from experimental data. 

  

  
   

  

   
   

   

   
     (1) 

With   the concentration of a pollutant, 
   the wind velocity in direction xi, 
   an eventual pollutant source term, 
   the turbulent diffusion coefficient, 

  
  

   
 is the advection term,   

   

   
  is the diffusion term. 

It is also possible to solve the ADE in space and time using discrete approach. This method is used by 
CFD software, calculating Dt from Navier-Stokes system closure equations. This is an iterative computing, 
using discretization in space and time. 
The last method to mention here is Lagrangian particle tracking. A wide number of particles are introduced 
in the numerical domain. Using advection from the previous calculated velocity field, particles are followed 
through the iterations. To take turbulence into account, a random controlled distribution is added to the 
mean velocity value. At the end of the simulations, the particle density is evaluated and linked to a 
pollutant concentration. Lagrangian models need expert control to adjust the correct velocity fluctuation. 
Summary of method cited here is schematize on Figure 1: 
 

 

Figure 1: Flow and atmospheric dispersion modelling. 

This study considers ADE resolution because no important expertise is needed once the setup is made. 
Two methods both using artificial neural networks are used here to take turbulence into account. 

3. Numerical scheme for Advection Diffusion Equation (ADE) resolution 

Solving ADE on a grid can be built using several discretization techniques such as finite differences, finite 
volumes, finite elements or spectral method. Finite differences are used in this work because of the setup 
simplicity. 
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Many different methods exist to discretize partial differential equations (Fletcher, 1991). It is commonly 
assumed to use respectively classic upwind scheme and centered scheme for advection and diffusion 
term: 

    
        

 

  
      

     
        

 

  
      

     
        

 

    
    

      
        

        
 

   
    

      
        

        
 

   
 (2) 

With     
  the concentration in the cell i (x direction), j (y direction) at time step t. 

In this case, discretization of the time dependent equation is explicit. The concentration at time step t+1 
depends only of the concentration at time step t. 
Each numerical scheme has to be consistent and stable i.e. convergent. Stability condition of this scheme 
had been largely discussed (Fletcher, 1991): 

   
   

                
 (3) 

This numerical scheme and associated limitations are used in the following. 

4. Using Artificial Neural Networks to solve ADE 

Artificial Neural Networks (ANNs) consist of several mathematical functions, termed as neurons, which are 
linked in a network. ANN are powerful as non-linear statistical data modeling tools. They are generally 
used when the process to model is not fully known thanks to two essential properties: first the universal 
approximation (Hornik et al., 1989), and second the parsimony (Barron, 1993). Thanks to these properties 
ANNs are able to predict efficiently future behaviors on never encountered situations. ANN can be used to 
forecast physical phenomenon, presenting powerful models (Ak et al., 2013). The information about the 
non-linear phenomenon to simulate or forecast must be provided using a database. As previously 
presented, ANNs act generally like a black-box: the physics cannot be extracted from the results. A neuron 
is a nonlinear, parameterized, bounded function. Variables are assigned to the inputs of the neuron. 
Output of a neuron is the result of nonlinear combination of the inputs, weighted by the parameters and 
using an activation function. Sigmoid s-shaped functions are generally used. A neural network is the 
composition of several neurons. Parameters calibration is done through application of an algorithm using 
the training database and designed to decrease the model error, in this work the Levenberg-Marquardt 
method is adopted (Hagan et al., 1994). The function realized by the ANN is continuously tested on a 
disjoined set of examples, namely the stop set. This last set is employed to avoid overtraining using early 
stopping (Sjöberg et al., 1995). Lastly, performances of the model must be measured on another set, 
never used during training or stopping: test or validation set. 

 

Figure 2 : ANN Training method 

4.1 Artificial Neural Networks ruled (CA-ANN) Cellular Automata 
This method uses both Cellular Automata (CA) and Artificial Neural Networks. Cellular automata are tools 
used for modeling physical phenomena in discrete space-time coordinates. The impact of local interactions 
on the evolution of the phenomenon is an important feature that promotes the use of CA. Itami (1994) 
formalized cellular automata, defining Q, as the global state of the system: 

           (4) 

  represents the discrete states accepted for the cellular automaton.   represents the neighborhood of 
cells providing input values for the transition rules, depending on the aim of the study. The transition rule   

519



defines how a cell changes his state from the current time step to the next. A large number of quantitative 
mathematical techniques can be used such as Artificial Neural Networks, genetic algorithms, Markov 
Chain, Monte Carlo simulations, fuzzy logic. Cellular automata can be used in real-time to forecast 
phenomena (Russo et al., 2013). In the present work, ANN are used as transition rules. The inputs are 
directly selected from the ADE as described in following Figure 3: 
 

 
Figure 3: ANN inputs creation 
 
An example database has to be created for the training phase of the ANN. It may be constituted of real life 
or small scale experiments or from CFD simulation representing reality. Database has to be representative 
of the atmospheric dispersion to be forecast. Data are recovered from a grid corresponding to the one 
used with the CA. Each input of the ANN is built from the neighborhood of the considered cell. According 
to 3.2, spatial and temporal steps are linked together. Data are then normalized and can be used to 
calibrate ANN parameters.  
Once the training algorithm is achieved, the process is similar to CFD techniques. Boundary conditions of 
the domain to simulate are set. Cells are initialized with concentration and wind field values corresponding 
to test scenario. The iterative process is then applied: cells concentrations and velocities are recovered. 
They are combined to compute the ANN inputs, using scheme of Figure 3. Inputs data feed the ANN 
synchronously through the entire domain and an output concentration is provided for each cell i,j.Hence, 
these concentrations are used to compute the next time step. The Figure 4 sums up the iterative process. 
  

 
Figure 4: CA transition rule algorithm 
 
Advantages and drawbacks of this method are discussed further. 

4.2 ANN determination of the turbulent diffusion coefficient 
In this work, the stationary velocity field is considered as known. ADE represents dispersion through time 
of an initial concentration distribution. Thereby, considering terms of equation 1, the only missing 
parameter to solve the ADE is the turbulent diffusion coefficient. Method presented here is to forecast this 
coefficient using ANN. As explained previously, turbulence over horizontal plane is not homogeneous. 
Especially, obstacles within the flow can critically affect the values of the turbulent diffusion coefficient. 
Moreover, meteorological stability conditions also affect this coefficient. Finally, altitude of the horizontal 
plane considered is a concern, related to the height of the atmospheric boundary layer. All these criteria 
have to be studied to determine the best ANN inputs. Because the ANN output is a single value, inputs 
have to include geometric data (Lauret et al., 2013). As in 4.1, an example database is built. Because 
initial hypothesis deals with passive gas, there is no need of information about atmospheric dispersion in 
the database. Instead, the different examples represent different flows with turbulence variations. 
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Once the training algorithm is done, the turbulent diffusion coefficient is computed on each cell of the grid. 
Then, a classical iterative process of the numerical scheme of the ADE described at 3 is applied as 
described in Figure 5. 

 

Figure 5: ANN inputs for Dt determination 

5. Pros and cons of both methods 

Both methods are fast because no direct/indirect solution of a linear system is required compared to CFD 
models. Moreover, modeling atmospheric dispersion over complex terrain can be considered: spatial 
heterogeneity of turbulence and obstacles can be implemented. Both methods use ANN. The CA-ANN 
uses it as a transition rule for the cellular automata whereas in the other hand, ANN are used to determine 
turbulent diffusion coefficient on a geometrical domain, once (Figure 6).  

 

Figure 6: Sum up of both methods 

CA-ANN is strictly a black box model: concentration is directly forecast. ANN-ADE can be considered as a 
grey box: Dt is computed from statistical training method and the phenomenon is modeled using physical 
ADE. 
Even if the training phase is very accurate, it implies some error on the prediction. This error is made at 
each time step for the CA-ANN. Therefore, global error potentially increases. This configuration can move 
towards solution instability as can be seen on Figure 7: 

 
 

Figure 7: CA-ANN error propagation                                Figure 8: Diffusion error due to Dt calculation error 

Dealing with CPU-time savings, using ANN rule is nearly instantaneous, because of the application of a 
simple explicit equation. Nevertheless, the rule is applied for each cell. As the number of cells increases, 
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the CPU-time increases too. For the same domain, CA-ANN appears to be approximately 1.5 times faster 
than CFD calculation to get final state. If each time step is required, then, the CA-ANN is 20 times faster. 
In the case of Dt calculation, error is made once. It implies increase or decrease of diffusion process over 
advection. This kind of error is illustrated on Figure 8. Peaks of concentration are synchronized in space 
but not in value. In this case, the coefficient of turbulent diffusion is overestimated compared to CFD 
transport process, resulting in ANN-ADE peak decrease. In addition, mass balance is difficult to do for the 
ANN because the lack of information on where the maximum error is located. Nevertheless, a global mass 
balance can be done and used for basic error correction. As the objective to take into account for 3D 
atmospheric dispersion, improving the calculation of Dt seems easier. Modifications in the ANN inputs, 
especially for geometric data, are required. Then, application of finite differences techniques seen at §3 
poses no major difficulties. In case of CA-ANN modification, database creation and ANN training phase 
mobilize considerable computer capacities. 

6. Conclusions 

Both methods presented here use machine training tools. CA-ANN method is a black box model, focused 
on forecasting directly concentration of atmospheric gas. Cellular automata are used to emulate ADE 
through specific domain. Transition rule is implemented by an Artificial Neural Networks. Inputs are 
created based on ADE parameters. General behavior is satisfactory. Main difficulty is to avoid error 
amplification due to small ANN training error inevitably increasing inside the domain. ANN-ADE method is 
a grey box model. It combines the use of ANN to determine heterogeneous Turbulent Diffusion Coefficient 
throughout the domain. ADE finite differences resolution is then applied. Major concerns are on the error 
made during the Dt ANN training phase. It can lead to change the ratio between advection and diffusion in 
the considered phenomenon. Nevertheless, physics of atmospheric dispersion is kept.  
Future work will be focused on tridimensional atmospheric dispersion over multiple obstacles and error 
correction. 
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