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The support vector machine (SVM), which has long-term prediction period, strong generalization ability 
and high prediction accuracy, provides an efficient new way for life prediction of accelerated degradation 
testing (ADT). In this paper, an intelligent prognostic model for step-stress ADT (SSADT) based on SVM is 
proposed. The SSADT data of superluminescent diode (SLD) is utilized to validate the proposed method. 

1. Introduction 
Along with the continuous improvement of modern product design, manufacturing level and material, 
product reliability becomes increasingly higher and life becomes longer. Traditional reliability analysis 
method based on binary failure data (normal and fail) is not applicable now. It is a continuous performance 
degradation process from the product initial state to the final failure. Since the failure mechanism of 
product can be traced to its potential performance degradation process, the thought of utilizing 
performance degradation data of product to predict its lifetime and reliability is proposed. Accelerated 
Degradation Testing (ADT) is the process of testing a product by subjecting it to conditions in excess of its 
normal usage in an effort to collect more degradation data in a short time period to extrapolate and predict 
lifetime and reliability of products under normal conditions. 
There are two main ADT methods presently: constant-stress ADT (CSADT) and step-stress ADT (SSADT). 
CSADT divides the samples into several groups. Each group is tested under a certain accelerated stress 
level. In SSADT, all specimens are tested under the accelerated stress increasing step by step. The 
implementation and data analysis method of CSADT is relatively simple, and many research achievements 
have been obtained (Nelson, 1990; Meeker et al., 1998; Deng et al., 2007). By contrast, the SSADT is 
more complex, and the achievements are relatively less (TSENG and WEN, 2000; Li et al., 2008; Yuan et 
al., 2012). However, because of the less sample size and higher testing efficiency, the SSADT attracts 
more and more attention. 
In this paper, Statistical Learning Theory is introduced to the statistical analysis of SSADT, and an 
intelligent prognostic model for SSADT based on support vector machine (SVM) is proposed.  The method 
overcomes the difficulty brought by the small sample data in a certain extent and further enriches the 
theory of ADT evaluation. 

2. Theory of Support Vector Machine for regression 
Support vector machine (SVM) was developed by V. N. Vapnik (Vapnik, 1995), which is a novel learning 
machine based on Statistical Learning Theory (SLT). SVM minimizes the true risk by the principle of 
Structure Risk Minimization (SRM). The basic idea of SVM for regression is to map the input data into a 
high-dimensional feature space by a nonlinear mapping  and to perform linear regression in this space. 
The theory of SVM for regression is briefly introduced as follows (Xu et al., 2007). 
Given a set of training data {(xi, yi), …, (xl, yl)}, i=1, 2, …, l, where xi Rn denote input patterns, yi R are 
the targets and l is the total number of training samples. In SVM for regression, the goal is to find a 
function f(x), i.e. an optimal hyperplane, which has at most  deviation from the actually obtained targets yi 
for all the training data and is as flat as possible. The form of functions is denoted as 
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( ) , ( ) with : ,ω ω= = Φ + Φ → ∈ny f x x b R F F                                                                                         (1) 

where (·) is a nonlinear mapping by which the input data x is mapped into a high dimensional space F, 
and ·,·  denotes the dot product in space F. The unknown variables  and b are estimated by 
minimizing the regularized risk function Rreg[f] 
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where C is a constant determining the trade-off between the flatness of the regularized term (|| ||2/2) and 
the empirical error (the second term). ( )ζ ⋅  is the -insensitive loss function, and e is the tube size. 

By introducing the non-negative slack variables (*)
iξ , Eq. 2 is transformed into the following convex 

constrained optimization problem: 
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According to Wolfe’s Dual Theorem and the saddle-point condition, the dual optimization problem of the 
Equation 4 is obtained as the following form:  
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where (*)
iα  are the nonnegative Lagrange multipliers that can be obtained by solving the convex quadratic 

programming problem stated above. Finally, by exploiting the Karush-Kuhn-Tucker (KKT) conditions, the 
decision function given by Equation 1 gets the following form 
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In order to get the dot product in the feature space simply and avoid the curse of dimensionality, the kernel 
function k(xi, xj)= (xi), (xj) is introduced, which satisfies the Mercer condition. The most commonly 
used kernel functions are: 
(a) The polynomial kernel ( , ) ( , ) , , 0′ ′= + ∈ ≥pk x x x x c p N c  

(b) The Radial Basis Function (RBF) kernel ( )2 2( , ) exp (2 )σ′ ′= − −k x x x x  

(c)  The Sigmoid kernel ( , ) tanh( , )θ′ ′= +k x x b x x  

3. Step-stress Accelerated Degradation Testing 

3.1 Stress Applied Method 
A group of accelerated stress level is selected before the SSADT, i.e. S1<S2<…<SK, which are all harsher 
than normal stress level S0. At the beginning, all the specimens are tested under stress level S1. After a 
predetermined duration time, stress level is changed to S2. So continue, the testing is conducted until it 
reaches the censored time or all specimens’ performance parameters degrade to a certain threshold while 
no failure happening.  
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Figure 1: The process of stress applied in SSADT 

SSADT has the advantage of fewer specimens, which is an efficient way to solve the problem of the small 
sample. Since the same products are tested under all stress levels in SSADT, cumulative damage should 
be considered when making SSADT data analysis. Therefore, it is necessary to convert the test data 
under each accelerated stress level into the normal stress level. 

3.2 Basic Hypothesis 
Data analysis of SSADT is basically under the following hypothesis (Li et al., 2008): 
1) Product failure mechanism and failure mode do not change under each accelerated stress level; 
2) Product has a regular performance degradation process and the process is irreversible; 
3) A cumulative exposure model holds. That is, the remaining life of specimens depends only on the 
current cumulative damage fraction it has happened and current stress - regardless how the fraction 
accumulated (Nelson, 1990). 
According to Hypothesis 3, the testing data obtained by SSADT can be converted into the same stress 
level. Li et al. (2008) has provided the specific conversion algorithm. 

4. The Intelligent Prognostic Method for SSADT Based on SVM 

4.1 The SVM Prognostic Model 
Product performance degradation data can be regarded as a time series which reflects the product state. 
According to Kolmogrov Theorem, any time series can be regarded as an input-output system which is 
determined by nonlinear mechanism. The idea of SVM prognostic model is finding the mapping f on the 
basis of the history data to approach the hidden nonlinear mechanism F in time series. The mathematical 
description of SVM prognostic model is as follows. 
Given a time series 1 2{ , , , }= kX x x x , the question is how to predict kx while 1 1{ , , , }− − + −k m k m kx x x are known. 

Solving this problem needs to establish the mapping f: Rm R, where 1 1{ , , , } ,− − + − ∈ m
k m k m kx x x R  ∈kx R . So 

we can get 

1 2 1( , , , , )− − + − −=k k m k m k kx f x x x x                                                                                                                      (7) 

For the modeling of time series 1 2{ , , , }= kX x x x , in order to establish the mapping relationship between 
the moving time window 1 2 1{ , , , , }− − + − −=k k m k m k kX x x x x  and the output { }kx , phase space reconstruction 
should be performed firstly. 
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where, Xre is the input matrix after reconstruction, Yre is the corresponding vector. m is the prediction 
embedded order. The principle of Final Prediction Error (FPF), which can identify AR model order in time 
series analysis, is utilized to obtain the best prediction order m (Guo, 2009). 
According to the decision function (Eq. 6) of SVM for regression, SVM regression model is obtained as 
following form 
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where t = m+1,…,k. Then, one-step SVM prediction model is  
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where 1ˆ +kx  denotes the k+1th prognostic value of the raw data, { }1 1 2, , ,− + − + − +=k m k m k m kx x x x  denotes k-

m+1th  row of matrix Xre, that is the sets of m elements before xk+1 in X. 

1ˆ +kx could be used to construct new vector { }2 2 3 1ˆ, , , ,− + − + − + +=k m k m k m k kx x x x x , and the k+2th recursive 

prognostic value can be obtained by making it as the input. Further generalization can obtain the n-step 
recursive prognostic model as follow. 
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where ˆ +k nx  denotes nth step recursive prognostic value, { }1 1 1ˆ ˆ, , , , , ,− + − + − + + + + −=k m n k m n k m n k k k nx x x x x x  

denotes k-m+nth row of matrix Xre. 

4.2 The Proposed Intelligent Prognostic Method 
The SVM intelligent method is utilized to analyze the testing data of SSADT and make prognostic in this 
paper. The research program is shown in Figure 2. 

 

Figure 2: Flow chart of prognostic method for SSADT based on SVM

Generally, the performance degradation data obtained by SSADT usually have some abnormal values, 
irrelevant trending fluctuations or temperature drift phenomenon. So, the pre-process of the testing data 
should be conducted firstly. 
Then, the degradation data under accelerated stress level needs be converted into the operation stress 
level based on the hypothesis of cumulative damage (Li et al., 2008). 
Finally, multi-step recursive prediction for the converted degradation data under normal stress level should 
be conducted by utilizing the proposed prognostic model for performance degradation based on SVM. 
According to the predetermined failure threshold, extrapolated failure lifetime of each specimen can be 
obtained. Then, the corresponding reliability curve can also be obtained by fitting the distribution of 
extrapolated failure lifetime. 

5. Case study 
Integrating the merits of LD’s big output power and LED’s broad spectrum width, superluminescent diode 
(SLD) is the most important and fragile part of fiber optic gyroscopes (FOGs) (Chao et al., 2012). 
For evaluating the lifetime and reliability of SLD, a temperature SSADT with 4 stress levels has been 
conducted. The sample size is 3 and the monitoring parameter is the output optical power of SLD. The 
parameters of the SSADT are in Table 1 and the SLDs’ performance degradation raw data obtained by 
SSADT are shown in Figure 3(a). 

Table 1:  The test parameters of SSADT 

Stress level S1 S2 S3 S4 

Temperature/  60 80 100 110 
Duration time/hours 2420 716 301 342 
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Since the performance parameters of SLD have the characteristic of temperature drift, the degradation 
data have step changes. The pre-process of the testing data is performed firstly in order to exclude the 
effects of temperature drift. The pre-process results are shown in Figure 3(b). 
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Figure 3: SLDs’ degradation data obtained by SSADT: (a) raw data, (b) data after pre-process 

Then, the performance degradation rates are obtained by regression fitting the testing data under each 
stress level. Because the sensitive stress type of SLD is temperature, the Arrhenius model is considered to 
acceleration model, i.e., the relationship between the SLD performance degradation rate and temperature 
stress level is ( ) exp( / )d T A B T= − . After obtaining the acceleration model parameters of each specimen 
through least square fitting, the degradation data of each specimen under accelerated stress can be 
converted into normal stress level 25 , as shown in Figure 4. 
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Figure 4: the degradation data converted into normal stress level 

Finally, Support vector machine modeling and multi-step recursive prediction for each SLD are performed, 
and the prognostic results of extrapolated failure lifetime for 3 specimens are shown in Table 2. Where, the 
failure threshold value is 50% of the initial value under normal stress level. The reliability curve obtained by 
Weibull distribution fitting is shown in Figure 5. 

Table 2:  extrapolated failure life of each sample under normal stress level 

Sample number S115 S203 S240 

Extrapolated failure life /hours 3.8986 105 6.5558 105 4.9671 105 
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Figure 5: reliability curve of SLD under normal stress level 

6. Conclusion 
SVM method is introduced to analyse SSADT data and lifetime prognostic model is derived. The SSADT 
data of SLD is utilized to demonstrate the validity and applicability of the proposed intelligent prognostic 
method. The proposed method can evaluate product life and reliability in the case of zero-failure data, 
which has certain reference significance to the high reliability and long life products. 
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