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To monitor the start sequence of turbofan engines, a PHM algorithm has been developed. It is called ESC 
for Engine Start Capability. The anomaly detection phase is performed using a global abnormality criterion. 
This criterion is obtained by computing the Mahalanobis-distance on standardized residuals (z-scores). In 
the maturation (performance assessment) perspective of the ESC PHM algorithm, two detection 
approaches are compared. The first approach (approach 1) is based on the crossing of a threshold 
determined from the moving average over n starts of the global abnormality criterion. The second 
approach (approach 2) is based on a minimum number (k) of the global abnormality criterion observations 
that cross a threshold out of a fixed one (n). The two thresholds are respectively determined in accordance 
with the two detection approaches. The performances of each approach have been estimated, in terms of 
probability of detection, P(Detection|Degradation), and No Fault Found ratio (NFF), P(Healthy|Detection). 
A benchmark of these performances is presented in this paper. 

1. Introduction 
One of the aims of Prognostics and Health Management (PHM) is to monitor the health state of a system 
to improve its availability and maintenance schedule. In that perspective, several PHM algorithms have 
been developed by Safran. The aim of these PHM algorithms is to provide defects detection and isolation 
and to predict degradations for avoiding failures. It is important to note that the development step is not the 
ultimate step in the perspective of their implementation on board. The maturation (performance 
assessment) step follows the development step to make the PHM algorithms operational. The maturation 
step consists in assessing PHM algorithms performances. It is not possible to know if our PHM algorithms 
reached some required performances without this step. 
A PHM algorithm that monitors the start sequence of a turbofan engine, Engine Start Capability (ESC), is 
considered in this communication. This algorithm is built as shown in figure 1. A first step of the ESC PHM 
algorithm consists in taking measurements from turbofan engines (Ausloos et al., 2009). Then eight 
degradation indicators (Flandrois et al., 2010), are extracted from these measurements for each start. 
Outliers, those correspond to abnormal starts, are removed thanks to a pre-processing step, to create a 
healthy dataset. Models are built (thanks to this healthy dataset) for each of the eight extracted 
degradation indicators. Then, z-scores, those correspond to the normalized residuals, are calculated. A 
global abnormality criterion is finally computed by applying a Mahalanobis distance on the z-scores 
(Lacaille, 2009). This is the health status indicator produced by the ESC PHM algorithm. It is used as an 
input for the detection, localization and prognostic phases to take a global decision about the health status 
of the start sequence.  
In this communication, only the detection phase is considered. It consists in applying a decision threshold 
to the global abnormality criterion to detect an abnormality or not. Two detection approaches are 
considered. The first one consists in determining the moving average of the global abnormality criterion 
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over n engine starts and to compare it to a threshold. The second one consists in determining the decision 
threshold to detect at least k out of n crossing by the global abnormality criterion when a problem occurs.  
The aim of this communication is to compare these two approaches thanks to performance benchmark. 
This study has been realized using operational values for k and n. The impact of each of these parameters 
on the performances has been studied. Considered performance metrics are described in section 2. 
Section 3 describes the two detection approaches. Results are compared in section 4 and finally, section 5 
concludes the study. 

Figure 1: Engine Start Capability (ESC) PHM algorithm description 

2. Performance Indicators or metrics 
Airlines requirements for PHM algorithms rely on two performance indicators (Hmad et al, 2012). The NFF, 
No Fault Found ratio, P(Healthy|Detection), and the Probability Of Detection POD, 
P(Detection|Degradation). 
POD is the power of the detector. It is the probability to detect an abnormality given that there is a 
degradation. Using labeled data, its empirical estimates can be easily obtained. Labels are obtained 
thanks to generation of simulated degradations. The generation of simulated degradations is based on the 
analysis of bench test data. The effects of degradations have been identified, quantified and modeled. The 
model is then used to inject degradation into indicators obtained while the system was running under 
normal condition (Hmad et al, 2012). 
NFF represents the probability that the system is healthy when an abnormality is detected. Applying Bayes 
theorem, its analytical expression is given by equation (1). 
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with P(Detection|Healthy) the first order error. 
Airline companies give the required values of NFF and also specify that the power of the detector have to 
be close to 1. Thanks to this information it is possible to determine P(Detection|Healthy)target (targeted first 
order error) corresponding to the required NFF (NFFtarget) and POD (PODtarget). P(Detection|Healthy)target

can be determined by equation (2) thanks to airline companies requirements. 
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P(Degradation) may be known through Failure Mode and Effect Analysis (FMEA) or field experience. In 
our case, P(Degradation)=10.10-6. 
The aim of the maturation is to evaluate and verify if the required performances are reached. This is done 
thanks to decision thresholds tuning to respond the airline requirements. If the required performances 
cannot be reached, the algorithm is not receivable and has to be improved before being used. 
To have a more precise analysis of the performances, it has been decided to estimate it for different 
intensities of premise degradations. Two degradation intensities are considered. Medium (respectively 
high) degradation intensities which represent medium (respectively short) remaining time before failure. 

3. Decision threshold determination 
Detection performances of the ESC PHM algorithm depend on the considered decision statistic and a 
threshold applied to it. To determine the threshold, we chose to estimate the distribution of the decision 
statistic and then to determine the decision threshold as the value that corresponds to the targeted 
P(Detection|Healthy) quantile on this distribution. Two decision statistics are considered in 3.1 and 3.2 
respectively. 
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3.1 Approach 1 : detection based on moving average score over n starts 
This approach consists in detecting an anomaly if the global abnormality criterion averaged over a 
rectangular window of size n is higher than a threshold. Computing the moving average over n 
observations enables to reduce the variance by factor n1/2 of the statistic used for decision and thus 
improve the power of detection. 
To estimate the performances of this approach, it is necessary to determine the detection threshold that 
responds to the airline requirements. To do this, the calculation of P(Detection|Healthy)target according to 
the airline requirements is the starting point of the detection threshold estimation. This is done thanks to 
equation (2) with NFFtarget = 1 %, PODtarget � 100 % and P (degradation) = 10.10-6. 
As the distribution of the decision statistic (averaged global abnormality criterion without degradation) is 
unknown, a Parzen window (Silverman, 1986) is applied on the decision statistic to determine the 
detection threshold thanks to equation 3. The choice of the Parzen estimatior has been realised thanks to 
the study presented in (Hmad et al, 2011). 
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with F-1: the inverse cumulative density function of the Parzen estimator applied to the average global 
abnormality criterion without degradation. 

Figure 2: Detection threshold corresponding to the P(Detection|Healthy)target quantile after a Parzen 
window adjustment on the averaged global abnormality criterion (without degradation) over n=5 starts 

3.2 Approach 2 : detection k out of n starts 

Figure 3: Example of detection k=4 out of n=5 starts. An anomaly is detected if at least k=4 values of the 
global abnormality criterion cross the threshold in a window of size n=5. 

Detection k out of n must inform the user about the persistence of a detection signal. This is done by 
observing if a predefined proportion (e.g. k=4 and n=5: k/n=80 %) of the observations are detected as 
abnormal over a sliding window of size n (figure 3). Once again, n is chosen according to operational 
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constraints. This function detects an anomaly if at least k observations of the global abnormality criterion 
out of n are higher than a threshold. This threshold is determined after estimating the distribution of the 
considered decision statistic. 
For each observation, the criterion value has a probability p to cross the detection threshold while the 
system is working fine. One can consider the decision variable as a random variable from a Bernoulli 
distribution with parameter p – Bernoulli(p). The distribution of n repetition of Bernoulli experiences is a 
Binomial distribution with parameters n and p – Binomial(n,p). The probability of detection k out of n 
observations is therefore given by Binomial(n,p). 
To estimate the performances of this second approach, it is necessary to determine the first order error 
that meets the airline requirements. As in previous case, it is done thanks to equation (2) with NFFtarget = 
1%, PODtarget � 100 % and P (degradation) = 10.10-6. 
Once the targeted first order error (P(Detection|Healthy)target) is estimated, we have to determine the p 
parameter of the Binomial(n,p) under H0 as the probability that at least k out of n observations cross a 
threshold with confidence 1-p is inferior to P(Detection|Healthy)target. To do this, we must solve the 
polynomial of degree k of the Binomial distribution function such as P(Binomiale(n,p)k) �
P(Detection|Healthy)target. However, as P(Binomiale(n,p)k) = Beta(k,n-k+1) (p) (Nikulin et al., 2006), p can be 
estimated thanks to equation (4). 
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with n the size of the observation window, k the minimum number of detected observations to confirm the 
persistence of the detected signal. 
Once the parameter p is estimated, we choose the threshold that corresponds to the p quantile on the 
Parzen window adjustment apply to the global abnormality criterion without degradation. 
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with F-1: the inverse cumulative density function of the Parzen estimator applied to the global abnormality 
criterion without degradation. 

Figure 4: Detection threshold corresponding to the p quantile after a Parzen window adjustment applied to 
the global abnormality criterion without degradation 

4. Result 
4.1 Dataset and experimentation design 
The performances of both detection approaches have been estimated for the same dataset. This dataset 
is obtained thanks to measurements extracted from ten turbofan engines.  
As the available data are free from degradation, we have generated degradation by simulation. The 
degradation models have been identified thanks to bench test data with degradations. Two degradation 
intensities are considered. Medium (respectively high) degradation intensities which represent medium 
(respectively short) remaining time before failure. 
The considered turbofan engines are used for medium range flight. About 5 flights are operating per day. 
So, the considered window size for the both detection approaches is n = 5 which represents one operation 
day. Then the performances are estimated for n = 10 which represents two operation days. Several values 
of k are tested to show its impact on the performances. 
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4.2 Comparison of the two detection approaches results 
The estimated performances for both approaches are shown in this section. The two next paragraphs 
shows the estimated NFF and POD when the window size is n=5 and n=10 starts.  
Concerning detection based on moving average, the threshold is determined tanks to the methodology 
describe in subsection 3.1. 
Concerning detection k out of n. Several confirmation ratios (k/n) have been tested. Then thresholds are 
determined thanks to the methodology described in subsection 3.2 for each k. 

Case of n = 5 
Figure 5 shows the estimated NFF (on the right) and POD (on the left) averaged over the 10 engines for 
each degradation intensity (medium and high). It appears that, whichever the degradation intensity, the 
performances obtained by approach 1 are better than approach 2 for all k values. This can be explained by 
the presence of extreme values on the global abnormality criterion that impacts the determined decision 
threshold values. In fact, we first estimate the probability density function of the decision statistic and then 
determine the threshold that corresponds to the targeted first order error (P(Detection|Healthy)target). As the 
probability density function of the decision statistic for approach 1 is obtained after average, extreme 
values are smoothed and have a minor impact on the density estimation and the threshold determination. 
This is unfortunately not the case of approach 2.  
It appears that NFF decreases when k increases. This is an expected result, the alarms which are false 
decrease when the needed number of the global abnormality criterion values that cross the threshold 
increases. The increasing in k helps deciding an anomaly just when it is true. This explains the increase of 
POD when k increases.  
The required performances are reached for the medium and high degradation intensities for approach 1. It 
is also reached by approach 2 for k=5 for high degradation intensities. 

Figure 5: estimated NFF and POD for the both detection approaches for the case of n=5 

Case of n = 10 
Figure 6 shows the estimated NFF (on the right) and POD (on the left) averaged over the 10 engines for 
each degradation intensity (medium and high). 
As when n=5, the performances with approach 1 are better than with approach 2. The required 
performances are reached by approach 1 whichever the degradation intensity. 
Concerning approach 2, the performances are reached for all k values for high degradation intensities. 
However, the required performances are reached for k=7 to k=9 for the medium degradation intensities. 
This can be explained as follow. On the one hand, when k is low, the threshold value is important. So the 
probability of non detection increases leading to important NFF (according to equation (1)). On the other 
hand, when k is high (important), the threshold value is low but we want more threshold crossing to 
confirm the detection. As the needed number of threshold crossing k is important, the NFF decreases. 
There are some limits, when k increases, the corresponding threshold decreases. If the threshold value is 
too low, the probability of false alarm increases. It becomes easy to decide a healthy observation as faulty. 
It is so necessary to choose carefully an optimal k. This discussion is illustrated by figure 6. It appears, for 
the considered dataset, that the optimal k value is k=8 when n=10. It is not k=10 because the 
corresponding threshold value is low and induce some false alarms. Indeed, some healthy observations 
have been detected as abnormal because of the low threshold value. 
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Figure 6: estimated NFF and POD for the both detection approaches for the case of n=10. 

5. Conclusion and perspectives 
Two detection approaches have been compared thanks to performances benchmark. The first one 
consists in determining the moving average of the global abnormality criterion over n engine starts and to 
compare it to a threshold. The second one consists in determining the decision threshold to detect at least 
k out of n crossing by the global abnormality criterion when a problem occurs. 
The considered performance criteria are the NFF ratio (P(Healthy|Detection)) and POD 
(P(Detection|Degradation)). These criteria correspond to airline requirements. The choice of the 
performance criteria is important and may have significant impact on the study. If we choose irrelevant 
performance criteria, we think that the performances meet the requirements but it is not true.  
This study shows that, whichever the size of the observation window, approach 1 gives better performance 
than approach 2. It can be explain by the use of a moving average that reduces the impact of extreme 
values when estimating the probability density function of the decision statistic to determine a threshold. 
In both cases, the performance can be improved by increasing the window size. However, we have to note 
that increasing in the window size has a direct impact on the reactivity of the detector. 
Different values for k have been used. The study shows that there is a tradeoff to be found between NFF 
and POD to choose the optimal k value for a fixed window size. 
A perspective of this study can be to automatically choose the optimal k and n values.
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