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Information fusion is becoming state-of-the-art methodology for performance assessment of engineering 
assets. Efficiently and smartly combining multi-source information and relevant models from the interested 
object, more accurate and reliable diagnostic and prognostic results regarding the object can be achieved, 
which are especially significant for the condition-based maintenance and prognostics and health 
management applications. Ensemble learning, as a typical machine learning and decision fusion method, 
has long been applied in the pattern recognition field and demonstrated promising performance. However, 
scarce applications of ensemble learning have been found for remaining useful life (RUL) predictions. RUL 
prediction based on ensemble learning by merging multi-piece information and dynamically updating is 
proposed in this paper. Specifically, multiple base learners are trained to work as one RUL estimator and 
weighted averaging with dynamically updated weights upon the latest condition monitoring information is 
employed to aggregate these RULs to form the final RUL. Rolling element bearing degradation 
experimental data is used to verify and validate the effectiveness of the proposed method. 

1. Introduction 
Condition-based maintenance (CBM), which takes the operational conditions of engineering assets into 
account when scheduling interventions (e.g. repairs, replacements etc.) and thus can greatly reduce the 
running costs while increase their availabilities and is attracting increasing attention from both academic 
and industrial domains (Jardine et al., 2006 ). To practice CBM, prognostics should be carried out to 
estimate RUL upon all the available information, which is of significance for prognostics and health 
management (PHM) applications as well (Chen et al., 2012). Methods of failure and reliability predictions 
(Zio et al., 2012) have become hot topics in various fields. 
Generally, RUL prediction methodologies can be filed into three types, i.e. model-based methods, data-
driven methods and combinations of the two (Sikorska et al., 2011). Failure-of-physics approaches, such 
as a Paris crack propagation model, can achieve accuracy RUL predictions but they are also more costly 
and application specific. On the other hand, data-driven methods, such as artificial neural network (ANN) 
(Gebraeel et al., 2004), stochastic filtering model (Wang, 2011) and hidden Markov model (Liu et al., 
2012), are more generic while their RUL estimation accuracy is compromised. So it seems more promising 
to fuse these two kinds of methods to perform RUL prognostics. However, there are rare failure-of-physics 
models that can be used to predict RUL of a component and further work needs to be done in this respect.  
To pursue accurate RUL predictions, RUL estimation based on ensemble learning is proposed in this 
paper and its performance is validated by rolling element bearing degradation experiments. 

2. Ensemble learning 
Ensemble learning is a typical machine learning paradigm in which more than one learner is constructed 
on the given information to solve the underlying problem and has been applied in many domains, 
especially in the pattern recognition problems (Oza et al., 2008). In essence, ensemble learning is also of 
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decision fusion category. Though it has not been proved theoretically why ensemble learning can work 
well, Dietterich (2000) gave three arguing reasons to explain its superior performance.  
Implementation of ensemble learning basically includes base learner construction and their results 
aggregating (Dietterich, 2002). Base learner, such as artificial neural network (ANN), can be constructed 
by calling the Boosting, Adaboost, stacking, random forests or other algorithms. The second problem that 
should be accounted is which kind of combining rules should be used to combine the individual results to 
give the final output. Majority voting, winner takes all and weighted averaging are among the frequently 
fusing rules in pattern recognition applications, while weighted averaging philosophy has been employed 
to obtain the ensemble learning regression results. 
To achieve better ensemble learning generalization performance, it is realized that accuracies of the base 
learners and diversities among them are two vital factors. Much work has been dedicated implicitly or 
explicitly to improve precisions of the base learners and the mutual-differences between the constructed 
constituents respectively or simultaneously (Wang et al., 2011).  

3. Ensemble learning based RUL prediction 

3.1 The proposed ensemble learning based RUL prediction approach 
The proposed RUL prediction method primarily consists of the off-line learning (Figure 1) and on-line 
usage (Figure 2) phases and its implementation is detailed as follows. 

Figure 1: Off-line learning of the ensemble learning based RUL prediction method 

Off-line learning process of the proposed RUL prediction method includes three steps. Specifically the 
historical run-to failure data of the engineering assets is classified into different foreseen running 
conditions to account for operational and environmental effects. Also, sensitive degradation features 
should be extracted or selected  by pre-processing the multiple sensory signals from the interested objects. 
Then clustering is employed to cluster similar degradation processes into common degradation modes to 
reduce the modelling efforts as well as relieving burden of the on-line usage. Finally, base learners are 
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constructed and trained with the typical deterioration modes. However, in cases where run-to failure data 
is absent or prohibitively expensive to collect, degradation censored data can work as an alternative. 
On-line usage modular of the ensemble learning RUL prediction is designed to perform instant RUL of the 
engineered artefacts when condition monitoring information is available. Firstly, condition monitoring 
samples (such as vibration signals) are pre-processed as done in the off-line phase. Secondly, the 
extracted degradation features are fed into the individual learners to estimate the RUL of the engineering 
objects and some kind of similarity measures are used to derive the likeness between the instant 
degradation features and the degradation modes. After that, the weighted average aggregating rule is 
employed to fuse the individual RUL into the final RUL. 

Figure 2: On-line usage of the ensemble learning based RUL prediction method 

3.2 Discussions on the proposed RUL prediction method 
Diversity of the proposed RUL estimation method is explicitly guaranteed by the multiple degradation 
modes, while convergence is partially ensured by the clustering. Moreover, dynamically weights updating 
modular can update the instant weights once new degradation features are present. This is a great 
improvement over the rare reported ensemble based RUL prediction methods (Hu et al., 2012). Since the 
true degradation mode of the interested object will be assigned more weight with the consumption  of its 
life and corresponding maintenance can be scheduled before real failure happens. 
During the off-line learning phase, historical run-to failure/degradation data is needed to compile a reliable 
and complete degradation mode pool, which can be costly, time consuming or even prohibitive. Thanks to 
many established and establishing accelerated life testing experimental and precise simulating platforms, 
the above issue can be much freed (Nectoux et al., 2012). Computational challenge of on-line dynamical 
weights updating and individual learner prediction can be managed by properly designing similarity metrics 
(e.g. probability, distance) and controlling the used historical information (i.e. degradation features 
preceding the current instant). 

4. Rolling element bearing RUL prediction 
Bearings are common components in many applications and are also the vulnerable parts, it will benefit a 
lot to practice CBM based on the estimated RUL (Medjaher et al., 2012). In this section, the ensemble 
learning-based RUL estimation method was applied to the rolling element bearing RUL prediction. 

4.1 Experimental setup 
The bearing degradation data is provided by the PRONOSTIA platform, which has been designed and 
realized at AS2M department of FEMTO-ST Institute (Nectoux et al., 2012). To better simulate "normally" 
bearing degradation phenomenon, the bearing defects (balls, rings and cage) are not initially initiated on 
bearings and almost all the types of defects can occur in one bearing during one running. This lays much 
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difficulties on the validation of the dynamically weights updating modular, which is one novel contribution of 
the proposed RUL prediction approach. However, this will be demonstrated in our future work. 
Testing bearings used in the experiment are rolling element bearings with zero contacting angles, and its 
specifications are tabulated in Table 1. The experiments were controlled that once the amplitude of the 
vibration signal overpassed 20 g, the testings were stopped and the testing bearings were deemed 
failures. During the bearing degradation testing, both horizontal and vertical vibration accelerations were 
sampled with a sampling frequency of 25.6 kHz and each sample had 2.56 k data points, while the 
sampling interval was 10 s. Six bearings under the 1800 rpm and 4000 N loads operational condition, 
whose lives ranged from shorter than 4 h to longer than 7 h demonstrating large variations were analyzed 
here.

Table 1:  Testing bearing specifications 

Bearing type  Pitcher diameter/mm Ball diameter/mm No. of balls 
Rolling element bearing 25.6 3.5 13

4.2 Bearing RUL prediction 
Initially, 13 time-domain statistical and 16 frequency-domain wavelet packet decomposition nodes energy 
features were calculated for both horizontal and vertical acceleration signals. Unfortunately, many of them 
are insensitive to the deteriorations, inconsistencies in the degradation process or uncommon among the 
tested bearings though the bearings are of the same type and under one usage condition. So variance 
analysis was performed to identify the much better features since there have been handful reports 
addressing the degradation feature evaluation issues. Finally, three from the horizontal and one from the 
vertical direction were selected (Figure 3), which is in consistent with the design of the experimental setup 
as the load was exerted in the horizontal direction. 
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Figure 3: Four degradation features 

It can be seen from Figure 3 that Bearing 1, 2 and 3 degraded similarly and Bearing 4 and 5 have the 
same degradation trend, while the failure progressing of Bearing 6 seems to be between the two 
degradation modes. Thus two degradation modes clusters (hereafter labelled as D1 and D2) were 
constructed.
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Two 4-16-1 BP-ANNs base learners were constructed and trained with the two degradation modes without 
any curve fitting or smoothing processing of the four degradation features and Bearing 6 was taken as the 
testing bearing. Outputs of the BP-ANN were the remaining life percentage, which can be transformed to 
RUL through simple calculation, and hereafter denoted as RUL.  
Bearing RUL prediction results are depicted in Figure 4. It can be concluded that D1-RUL (based on D1) 
overestimates the RUL and D2-RUL (based on D2) underestimates the RUL of Bearing 6. However, RUL 
based on ensemble learning (EL-RUL) is better and is a little biased towards shorter RUL, which is 
conservative and less costly to risk. Prediction relative errors with time elapsing are given in Figure 5(a) 
and conclusion can be drawn that in most cases the errors of the ensemble learning method (EL-E) are 
varying within 20 percent. While errors of the D1-E and D2-E are towards larger positive and negative 
errors respectively. To further statistically analyze the performance of the ensemble learning RUL 
prediction method, its error histograms are given in Figure 5(b), demonstrating that only 180 RUL 
predictions, i.e. a little less than 12 percent of all predictions, are not bounded in 20 percent relative errors. 
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Figure 4: Bearing 6 RUL prediction results 
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Figure 5: Errors evolving with time and error histogram of the ensemble learning RUL prediction method 

However, it is also observed that EL-E errors (Figure 5(a)) deviate more from zero at the end parts of the 
prediction, which contradicts with intuition that with consumption of the bearing life more accurate RUL 
predictions are expected (Gebraeel et al., 2009). This may be caused by the large difference of the latter 
part in the degradation modes (Figure 3) and can be tackled by some smoothing management. Another 
interesting observation is that more accurate single instant RUL prediction can be obtained by linear fitting 
since the sampling epochs are equal and thus RUL is linear decreasing with prediction instant. Please 
note that the weights were not updated dynamically but arbitrarily set as 0.5 for the two degradation modes 
for simple illustrating purposes on ensemble learning-based RUL prediction and further work should be 
done to dynamically optimize the weights and better degradation features are also beneficial. 
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5. Conclusions 
RUL prediction based on ensemble learning is proposed in this study and its effectiveness is validated 
using rolling element bearing degradation data. In essence, the proposed ensemble learning-based RUL 
prediction method is a combination of feature and decision fusion. With ensemble learning philosophy, 
operational conditions and degradation modes of the engineering assets are simultaneously included into 
the modelling process and results of base learners are aggregated to output the final RUL prediction by a 
dynamically weights updating process which can also indicate the underlying failure/degradation modes.  
Although ensemble learning methods have well-established in diagnostics applications, its potentials in 
RUL prediction have to be explored and much work needs to be followed. Construction of diverse and 
accurate base learners that output RUL distributions to manage uncertainties and what similarity measures 
should be used in the dynamically updating are among the future working directions. 
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