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Predictive Maintenance (PrM) exploits the estimation of the equipment Residual Useful Life (RUL) to 
identify the optimal time for carrying out the next maintenance action. Particle Filtering (PF) is widely used 
as prognostic tool in support of PrM, by reason of its capability of robustly estimating the equipment RUL 
without requiring strict modeling hypotheses. However, a precise estimate of the RUL requires tracing a 
large number of particles, and thus large computational times, often incompatible with the need of rapidly 
processing information for making decisions in due time. To circumvent this problem, the Risk Sensitive 
Particle Filtering (RSPF) technique is exemplified in this work by way of a case study concerning a 
mechanical component affected by fatigue degradation. 

1. Introduction 
In recent years, the relative affordability of on-line monitoring technologies has led to a growing interest in 
new maintenance paradigms such as PrM. This is founded on the possibility of monitoring the equipment 
to obtain information on its conditions, which is then used to identify problems at an early stage and predict 
their evolutions in the future for estimating the equipment RUL. An accurate estimation of the RUL is of 
great interest, as it would provide lead time to opportunely plan, prepare and execute the repair or the 
replacement of the equipment, e.g., by delaying the maintenance to the next planned plant outage, by 
provisioning with spare parts only at time of necessity, by optimizing staff utilization, while remaining 
acceptably confident that the system will not fail before maintenance and the equipment lifetime will be 
fully exploited (e.g., Zio and Compare, 2013).  
A number of prognostics approaches have been proposed in the literature in support of PrM (Zio, 2013). 
Among these, PF is emerging as a powerful model-driven technique, capable of robustly predicting the 
future behavior of the distribution that describes the uncertainty in the actual degradation state of the 
equipment (e.g., the crack depth of a mechanical component, Cadini et al., 2009). From the prediction of 
the future evolution of the degradation and knowledge of the failure threshold (i.e., the degradation value 
beyond which the equipment loses its function), one can infer the equipment RUL.  
Although “PF-based prognostic algorithms have been established as the de facto state of the art in failure 
prognostics” (Orchard et al. 2009), their application may be impaired in contexts where precise and/or 
conservative estimations of the RUL are mandatory, because these estimations require large 
computational times. Indeed, the RUL is related to a failure event, which is generally associated to 
particles located at the tails of the predicted distributions of the degradation state. This entails that the 
estimation of the failure probability is more sensitive to the imprecision due to the approximate particle 
representation. The large number of particles that PF needs to trace for providing robust estimates, heavily 
affects the computational expenses. 
A solution to this problem is proposed in this work, based on the RSPF algorithm (Thrun et al. 2001). It is 
exemplified on a case study taken from literature, concerning crack growth degradation. 
The proposed scheme of RSPF algorithm extends that proposed by Orchard et al. 2009, which is acts just 
on the sampling distribution without biasing the posterior one, describing the uncertainty in the degradation 
state.
The remainder of the paper is organized as follows: Section 2 briefly describes the main characteristics of 
PF-based algorithms in PrM applications, and the idea beyond the RSPF. Section 3 introduces the 
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reference example; the application of the RSPF to such example is discussed in Section 4; Section 5 
concludes the work. 

2. PF-based prognostics form PrM 
PF for prognostics is based on (e.g., Orchard 2007, Vachtsevanos et al. 2006): 

1. a degradation model describing the stochastic evolution of the equipment degradation x in 
discretized time instants 1, 2, ...k = :

1 ( , )k k kx g x ω+ = (1)

where g  is a possibly non-linear function and kω  is a possibly non-Gaussian noise. 

1) A set of measures 1,..., kz z  of past and present values of some physical quantities z  related to 
the equipment degradation x .

2) A probabilistic measurement model that links z  with the equipment degradation x :

( , )k k kz h x ν= (2)

 where h  is a possibly non-linear function and kν  is the measurement noise. 

Briefly, in PF a set { },  1,...,i
k k sX x i N= = , 1,2,...k =  of weighted particles is considered, which evolve 

independently on each other, according to the probabilistic degradation model of Eq. 1. The basic idea is 
that such set of weighted random samples constitutes a discrete approximation of the true pdf of the 
system state at time k . When a new measurement kz  is collected, the predicted pdf 

1 1 1( | , ,..., )k k kP x x z z− −  is adjusted through the modification of the weights of the particles, thus yielding the 

posterior distribution 1( | ,..., )k kP x z z . This step requires the knowledge of the probabilistic law which links 
the state of the equipment to the gathered measure (Eq. 2). From this model, the probability distribution 

( | )P z x  of observing the sensor output z  given the true degradation state x  is derived (measurement 
distribution), and used to update the weights of the particles upon a new measurement collection (see 
Appendix). Roughly speaking, the smaller the probability of encountering the acquired measurement 
value, when the actual equipment state is that of the particle, the larger the reduction of the particle weight 
in the posterior distribution. On the contrary, a good match between the acquired measure and the particle 
state results in an increase of the particle importance (for further details, see Arulampalam et al. 2002). 
Notice that in this work, PF will always refer to its Sampling Importance Resampling (SIR) version (see 
Arulampalam et al. 2002). This algorithm allows avoiding the degeneracy phenomenon (i.e., after few 
iterations, all but few particles would have negligible weights), which is typical of the standard version of 
PF (i.e., Sequantial Importance Sampling, SIS).  
Finally, in the present work the PF-based prognostic model is embedded within the PrM scheme as 
follows: 
• Degradation state can be known only via measurements, which are periodically taken with period II

(e.g., II=20 h). 
• When a measure is acquired, the estimation of the distribution of the current degradation state is 

updated, and the future evolution of such distribution is simulated. This allows to estimate the RUL, 
defined as the difference between time instant tPT at which the failure probability reaches a pre-fixed 
threshold value PT (e.g., PT = 1%) and the current time instant. 

• The preventive replacement action is performed either when the estimated RUL is elapsed or at the 
acquisition of a measurement if the updated distribution leads the equipment failure with a probability 
larger than PT.

2.1 The RSPF algorithm 
In the considered PrM setting, we are asked to estimate at a given time instant k , the equipment failure 
probability at the time instants * 1, 2,....k k k= + +  To this aim, the stochastic behavior of the sN  particles 

from instant k  is simulated according to the stochastic model in Eq. 1, thus providing an estimation of the 
distribution * 1( | ,..., )k kP x z z . The failure probability PT is given by the area of the tail of * 1( | ,..., )k kP x z z
that crosses the failure threshold d (filled area in Figure 1). When we are interested in estimating small 
values of PT (e.g., PT = 1%, 5%), PF necessitates handling an appropriate number sN  of particles, 
otherwise it gives non conservative values. This is due to the fact that PF provides a particle-based, 
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approximate pdf representing the uncertainty in the state x ; the smaller the number of particles sN , the 
worse the approximation.  
To clarify this issue, let us assume that PT = 1% (this may be the case where failures are associated with 
very high costs); then, PF needs tracing at least sN =100 particles to (roughly) estimate t0.01 as the time 

instant at which there is at least 1 particle above d. If sN  is smaller than 100, then the failure probability 

value is inevitably underestimated. For example, if we consider sN =20, the time instant t0.01 corresponds 

at least to t0.05. Obviously, considering sN  larger than 100 (e.g., 500), would provide a more robust 
estimation of t0.01, because a larger number of particles would exceed the threshold (e.g., 5). 
The larger computational times needed to run the PF algorithm with greater values of sN , may be in 
contrast with the requirement of estimating the equipment RUL in due time to anticipate reaction to failures 
to solve problems in advance.  
RSPF offers a solution for this. The idea is to generate particles in such a way that the risk associated to 
the errors coming from the approximate particle representation is embedded in the representation itself. In 
details, instead of the posterior distribution 1( | ,..., )k kP x z z  the RSPF tracks: 

1( ) ( | ,..., )k k k kr x P x z zγ (3)

where ( )kr x  is a positive and finite (almost everywhere) risk function, whereas kγ  is a normalization 

constant ensuring that 1( ) ( | ,..., )k k k kr x P x z zγ  is a probability distribution.  

Figure 1: Estimation of the failure probability; dotted line: true equipment degradation behaviour (in 
arbitrary unit); continuous lines: pdfs describing the uncertainty on x at the corresponding time instants (in 
arbitrary unit of time). Dashed line: failure threshold 

From Eq. 3, it clearly appears that the probability that a particle i
kx  belongs to the set kX  depends not 

only on the posterior distribution, but also on the risk associated with that sample. In turn, the effect of the 
risk function is to force the algorithm to sample from the regions of the sample space with higher risk 
values.
From these considerations, it emerges that not all risk functions will be equally useful to successfully apply 
RSPF, and identifying a proper shape of ( )kr x  is a fundamental issue. In this work, we derive the 

expression of ( )kr x  on the basis of the following consideration: the risk associated with the generic 

weighted particle i
kx  is strictly related to two main aspects: the closeness of i

kx  to the threshold and the 

uncertainty in its next II future steps. The larger the distance of i
kx  from the threshold d , the smaller the 

probability of achieving it within the next II steps, whereas the closer the particle to d , the smaller the 
probability of surviving II steps. These two factors influence the RUL estimation, and the corresponding 
maintenance decision, which comes from the rules:  
i) If RUL<=II, then a preventive replacement of the equipment is done. The risk associated to this choice 

is that the equipment lifetime is not fully exploited, since it would be removed at least II steps before the 
optimal replacement time. Such preventive action is supposed to last DP hours. 
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ii) If RUL >II, then delay the decision to the next measurement acquisition. Thus, the risk associated to 
this choice is that the equipment fails before the next II steps. In this case, a corrective replacement is 
performed, which lasts DC hours. 

In this work, we assume that the risk associated to decision i) is negligible with respect to that relevant to 

ii). Thus, the aim of RSPF is to generate samples from a distribution that factors-in the risk ( )kr x  of not 
removing the equipment before failure. 

The shape of ( )kr x  is derived by resorting to the Monte Carlo method. Namely, the sample space [0,d] is 
discretized into small bins. A large number M of particles are positioned in every bin, and their behaviors 
are simulated and traced for II steps. The portion of the M particles that cross the threshold provides an 

estimate of the probability for a particle located at 
ix  of exceeding the threshold d. Such probability value 

( )ir x  is indicative of the risk associated to the starting degradation state 
ix : multiplying it by the failure 

cost yields the expected cost associated with the decision of leaving the equipment working when its 

degradation state is 
ix . Notice that from the pseudo-code given in Appendix, it clearly appears that 

accounting for the cost factor in ( )kr x  is useless, being the biased sampling dependent on the ratio 

1( ) / ( )i i
k kr x r x − .

3. Reference Example 
In this Section, the example concerning the fatigue degradation process of a mechanical component is 
presented. The randomized Paris – Erdogan model (e.g., Cadini et al., 2009) is used to describe this 
degradation mechanism. Its most widely used expression is: 

1 1( )k n
k k kx x e C x tξ β− −= + ⋅ ⋅ ⋅ Δ  (4) 

where kx  is the crack depth at the (discretized) thk  time instant, β , C  and n  are constant parameters; 

(0, )k N ξξ σ , 1,  2,...k = , are independent and identically distributed random variables, whereas tΔ  is a 

sufficiently small time interval (in our calculations, tΔ =1h). 
The model (1) makes kx , 1,  2,...k = , a Markov process with independent increments, which are log-
normally distributed. The values of the model parameters, taken from (Cadini et al. 2009), are reported in 
Table 1. 
With regards to the measurement model, the uncertainty about the observations kz  is described by a 

white Gaussian noise 2(0, )N υυ σ≈ ; this enters the physical law that links kz  to the depth kx , leading to 
the following conditional pdf: 

Table 1:  Parameters of the reference example 

Paris Erdogan Model Measurement Model Maintenance Model 
Parameters Values Parameters Values Parameters Values

C 0.005
0β 0.06 II 20h

β 1
1β 1.25 DP 100h 

n 1.3
υσ 0.47 DC 200h 

tΔ 1 d 100 mm CP ∝  DP

ξσ 1.7 CC ∝  DC
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where: 

0 1 ln k
k

k

x
d x

μ β β= + ⋅
−

(6)

where 0β  and 1β  are parameters to be estimated from experimental data, and d  is the component 
thickness. The values of the variables of both the measurement model (Cadini et al., 2009) and 
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maintenance model are listed in Table 1. In regard to the costs of the maintenance actions, these are 
assumed proportional to the component unavailability. This situation is typical of the plants where the main 
maintenance costs are related to the business interruption (e.g., energy production plants). 
Finally, notice that the reference mission time T does not end with the failure of the component; it is set to 
T = 10,000 h. This entails that the performances of the maintenance strategies are assessed with regards 
to the transient period, rather than to the steady state (Zio and Compare 2013). 

4. Application of RSPF 
In this Section, the PrM policy described in Section 2 is applied to the case study at hand. First, Figure 2 
shows the risk function ( )kr x , derived according to the procedure proposed in Section 2.1. This function is 

used to sample more particles with larger crack length (i.e., in the risky region of the interval [0, d ]).

Figure 2: Risk function relevant to the case of the crack growth mechanism 

Figure 3: Results of the study 

Figure 3 summarizes the results of the study. With regards to the performance of the RSPF when PT =0.1 

(continuous line), it can be noted that larger values of sN  correspond to smaller values of the component 
unavailability. This is due to the fact that a more precise approximation of the biased distribution in Eq. 3 
allows effectively avoiding component failures (Figure 3 (a) and (b)). This effectiveness in avoiding failures 
is counterbalanced by the poor exploitation of the component life (i.e., the mean crack length of the 
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preventively replaced components decreases (Figure 3(c)). For comparison, the performance of the 
classical PF algorithm are also reported in Figure 3 (dotted lines). These are worse than those of the 
RSPF.
Finally, Figure 3 shows also the results relevant to the application of the classical PF when PT = 0.05. The 
maintenance performance in this setting is similar to that of the classical PF when NS=10. This confirms 
that when the PT value is small, then PF tends to overestimate the RUL, unless a proper number of 
particles is tracked. Thus, reducing the value of PT is not a feasible way to reduce the number of failures 
when a small number of particles is handled by PF. 

5. Conclusions 
In this work, PrM maintenance has been considered, in combination with RSPF based prognostics. It has 
been shown that this combination allows considering a number of particles smaller than that required by 
the classical PF. The risk function considered accounts for the cost associated to the component failure 
only, whereas it neglects that of under-exploitation of the component preventively maintained before the 
optimal time. In this respect, the investigation of more complete risk functions is an issue worth of 
investigations in future works. Moreover, the performance of the PrM policy has been assessed in the 
‘nominal’ setting, only. A further analysis needs to be carried out to understand how and to which extent 
the performance values are sensitive to the model parameters (e.g., II, ratio between the cost of the 
preventive and corrective actions, etc.).  
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Appendix 

Pseudo-code of the RSPF algorithm (adapted from Thrun et al. 2001) 
set aux

k kX X= = ∅
for  1,..., si N=
 pick the i-th sample 1 1

i
k kx X− −∈ ; draw 1( | )i i

k k kx p x x − ; set 1( | ) ( ) / ( )i i i i
k k k k kw p z x r x r x −⋅ ;

 add i
kx  to aux

kX  with weigh i
kw

endfor 
for  1,..., si N=  %SIR algorithm 

 draw i
kx  from aux

kX  with probability proportional to i
kw ; add i

kx  to kX  with 1/i
k sw N=

endfor 
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