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Residual useful life plays a core role in the field of the prognostics and health management of systems. For 
deteriorating systems or devices it can be estimated by establishing a good-fitting stochastic process model 
and solving corresponding first passage problem with the given failure level. In this paper, providing that the 
mean and variance function of the degradation process are given or obtained directly from observed data by 
statistical/empirical techniques, we propose a time-dependent Ornstein-Uhlenbeck process whose mean and 
variance are equal to the given mean and variance respectively. Based on this diffusion process, when a 
failure level is considered, the first passage failure distribution can be solved by a Volterra integral equation of 
second class. Furthermore, with the help of numerical methods, the residual useful life estimation is 
considered for a real case.  

1. Introduction 
Estimating the residual useful life (RUL) from degradation records is a core issue in many fields, e.g. nuclear 
plant, aeronautical industry, mechanical engineering etc. However in a complicated environment with unknown 
mechanisms, degradation records may appear largely fluctuating. Therefore it is hard to use usual models to 
explain everything, e.g. Paris-Erdogan model or Gamma process, and more and more people add fluctuating 
uncertainties into the degradation models (K. Sobczyk, 2004).   
In general, people consider the fluctuation in the degradation records from 2 ways. The first is to consider the 
uncertainties as random errors e.g. measurement errors to the original degradation mechanism, which should 
be independent with each other at different times. This is supposed by plenty of physical or engineering work 
(Robert E. Melchers, 1999). The other supposes that the internal uncertainty cause the fluctuation. However in 
this case, we should notice that because of the complicated internal mechanisms, the outside appearance of 
the internal uncertainties can be rather unpredictable. And also as the complexity of such models is beyond 
the previous consideration, it is hard to perform later work such as estimation of RUL and mean time to failure 
(MTTF). However this is an active field attracted by many authors (Si et al., 2012).  
Compared to existing stochastic degradation models, the model stated in this paper is different from 3 
aspects. Firstly, the influence of the uncertainty at the initial state is considered and connected to later 
performance. Secondly, the variance of the process is almost a constant, which can provide a more 
appropriate way to describe the system development. Thirdly, this model has good properties for numerical 
solution: the first passage failure can be estimated based on efficient and stable numerical methods without 
the usage of Monte-Carlo simulation. 

2. Stochastic Modeling of Degradation Processes

2.1 System Descriptions and Hypotheses 
In this paper, we concentrate on deteriorating systems subject to gradually degradation processes such as 
fatigue crack, corrosion, erosion etc. And we suppose there exist mainly 2 kinds of uncertainties in 
deterioration model: measurement error and deterioration mechanism. Both of them are considered here, 
however the measurement error is treated as the internal uncertainty but not as an additive noise. Two 
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reasons motivate this simplification. In one hand in stochastic deteriorating systems, uncertainties at different 
times generally are dependent with each other. In the other hand, the internal uncertainty is a common 
phenomenon in degradation cases. For instance in crack and related fatigue phenomenon, a very important 
phenomenon named crack closure can cause fluctuation in the crack growth records even with perfect 
measurement  (K. Sobczyk, 2004). Also a recent work on the impact of lightning in corrosion failure can also 
support this system hypothesis (Necci et al., 2012). 
To summarize the above and for mathematical simplification, the system in consideration is supposed to have 
the following properties:  
1) The system deteriorates gradually without the risk of sudden shocks e.g. earthquakes, tsunami etc.  
2) The initial system state cannot be observed explicitly, or has some uncertainties.  
3) The degradation records have obvious fluctuations caused by internal system mechanisms and errors.  

2.2 Time-dependent Ornstein-Uhlenbeck Process 
Following the hypotheses of the system in previous section, noting tx  as the degradation level at time t , here 

we suppose that  tx   satisfies the following time-dependent Ornstein-Uhlenbeck process:  

,))()('( ttt dBdttrmtmrxdx σ+++−= (1)

where σ,r are non-negative real constants, ),0[)( 1 +∞∈Ctm , tB  is a standard Brownian motion. The 

initial value 0x  is a random variable with cumulative distribution function )(0 xF  and probability density 

function(pdf) )(0 xf , moreover it has variance 0v  and mean 0m .

The solution of the equation (1) can be given by:  
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Remarks: When rv 2/2
0 σ= , then from (3) the variance of tx  is a constant. We should also notice that this 

process has the mean-reverting and gaussian properties. Therefore it can be a substitute of wildly used noise-
added model, as it reserves consideration of fixed-variance uncertainty while it also includes the interaction of 
uncertainties at different times as the covariance is not zero. Moreover even 0x  is arbitrary, the asymptotic 

distribution of tx  is gaussian with mean )(tm  and variance r2/2σ .

Moreover, for the process tx , the transition probability density  ),|,(:),( sytxptxp =  satisfies the Fokker-

Planck equation:  
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where ),-()0,(,0),( yxxptp δ==±∞ )(⋅δ  is the Dirac mesure concentrated at y.  
And the analytic answer to (4) is given by:  
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where  γβα ,,  are given by  
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Remarks: when the initial value is a random variable, the transition pdf from 0x  is an average of (5) with the 

form .)()0,|,()0,|,( 00

+∞

∞−
= dyyfytxpxtxp  This can be calculated numerically especially when 0x  has a 

truncated distribution. 

2.3 Parameter Estimation 
In this section we will state how to estimate the parameters in (1) with given degradation data-set by maximum 
likelihood method. Supposing the degradation records are recorded on n  independent equipments, the 
records are noted by }0,1|){( , iijij mjnitx ≤≤≤≤ , where )( , ijij tx  stands for the record at the j th time 
in the i th trajectory. Moreover there exist totally n  trajectories with  im  records in the i th trajectory 
respectively, and we set .1,00 niti ≤≤=
If we set  )(tm  as a 3-parameter real function, e.g.  0)1)1(()( mtatm b +−+= , then (1) becomes a 5-
parameter model with parameter ),,,,( 0 σθ rmba= . When records for the i th trajectory )( , ijij tx  are 
given, the conditional PDF of tx  is based on the observation of  whose PDF appears as a Dirac delta 
distribution, so from (5), we know that:  
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where  γβα ,,  are given by (6).  

Then we can construct the log-likelihood function for the i th trajectory as follows:  
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Moreover, the log-likelihood function for the whole data-set is given:  
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From (9), we can maximize )(log θL  to get the optimal estimated parameters.  

2.4 Residual Useful Life Calculation 
Various ways exist to describe a system failure. In our research, we concentrate on deterioration 
phenomenons, e.g. corrosion, erosion, crack et al., in which deterioration cumulates until it reaches the 
material strength. So we will consider the first passage failure throughout: given an alert level of deterioration, 
a system failure occurs once accumulating deterioration exceeds the alert level.  
The above question is essentially the classical first passage time (FPT) problem in a mathematical view. That 
is to say, if tX  is a given stochastic process, Ω  is a given safe area, we want to investigate the first time  
when tX  leaves the area Ω  based on the present observation ),( sy , i.e. }.|:{inf yXXt stRt

=Ω∉=
+∈

τ
The residual useful life therefore can be expressed by s−τ . Also we can define the reliability of the system 
at time t  simply by )( tP >τ .
Here we just consider the one-dimension problem, given the boundary as ),(C)( 1 +∈ RtL where the safe 
area is supposed to be )}({ tLx ≤=Ω . Therefore to derive the distribution function ),|),(( 00 txttLg  for 
the first passage time τ , based on the initial value ),( 00 tx , we refer to the numerical solution to a Volterra 
integral equation of second class (E. Pirozzi et al., 2001) as follows: 
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where  
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with the same notations as in equations (5) and (6). 

Then equation (10) is with a non-singular kernel, and therefore can be numerically solved by several methods, 
such as compound trapezoid formula with the following form: 
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Remarks: when we consider the random initial value 0x , ),|),(( 00 txttLK  has an integral form which is 

hard to be given analytically, therefore we just consider the pdf of 0x  is truncated in the interval ],[ ba , and 

therefore we should calculate it with numerical integral scheme, e.g. compound trapezoid formula with the 
following form: 
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3. Study of a Real Degradation Case 

According to previous analysis, in the following we consider a real case study where the degradation data-set 
is chosen as 415 records of degradation in 159 independent equipments. And we do the following tests in a 
personal computer with R software (version 2.15.1). Figure 1 and Figure 2 express the degradation records in 
an intuitive way, where Figure 1 expresses the records of degradation, Figure 2 expresses the recorded 
trajectories on different equipments. Single points in Figure 2 mean that only one record is recorded on that 
equipment.  The measurement scale of the time adopted here is 1000 hours per unit, and the degradation level 
here is an integrated index without real measurement scale. 

Figure 1: Degradation records. Figure 2: Recorded trajectories on each component. 
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Figure 3:  Mean and standard variance. Figure 4: Several trajectories of the fitted process. 

Figure 5: Probability density of the first-passage 
failure time: red (12), blue(25), black(50). 

Figure 6: Cumulative density of the first-passage 
failure time: red (12), blue(25), black(50). 

We here suppose that the records is subject to the stochastic process defined in Eq (1), and a general 
description of the chosen model can be seen from Table 1. As the initial information is missing, we here 

suppose that initial value 0x  is uniformly distributed in ]12,0[ 0v ,  where 
r

v
2

2

0
σ= . We also 

suppose 03)1)1(()( vtatm b +−+= , therefore (1) now is a 4-parameter model with parameters 

),,,( rba σ . From the remarks in section 2.2, the constructed model is a stochastic process with constant 

variance 0v , mean )(tm , and covariance between tx  and sx  is tsstrv ≤−− )),(exp(0 .

Table 1:  General description of the chosen model 

Mean Variance Covariance Initial distribution Unknown parameters 
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Using the default Nelder-Mead algorithm in R with the searching start )1,6,35.1,6.0( ==== rba σ
and the initial interval is divided to 1000 parts, the parameters are optimized and the results can be seen from 
Table 2, where 0v =10.36483 . In Figure 3, the red curve is the expression for the fitted )(tm , and the upper 
and lower blue curves express 0)( vtm ±  respectively. The upper and lower black lines are for 

03)( vtm ± . Here if we treat tx  as a pure gaussian process (the asymptotic distribution of tx  is gaussian 
distributed), then a single point has a probability of 0.692 to appear in the area between 2 blue curves, has a 
probability of 0.999997 to appear in the area between the 2 black curves. From this probability view, Figure 3 
fits the hypothesis on the gaussian property of tx . Figure 4 shows several simulated trajectories of the fitted 
process.

Table 2:  Fitted parameters 

Parameter a B σ r r2/v 2
0 σ=

Value 0.6044493 1.3966703 2.2810409 0.2505040 10.38536 

Noticing the technical procedures for estimating MTTF and RUL are generally identical, and also the difficulty 
to estimate tens of elements’ RUL, we here just consider to estimate the MTTF instead. Moreover here 
instead of estimating one equipment’s MTTF, we consider the average MTTF for all equipments. We select 3 
constant boundaries )(tL : 12, 15 and 20, and consider the corresponding first passage time as the element’s 
failure time. In Figure 5, the probability density and cumulative density function for the first passage failure are 
compared, where the red, blue, black curves stand for the boundaries 12, 15, 20 respectively. The average 
MTTF for all equipments is estimatedand the results can be seen from Table 3. 

Table 3:  MTTF estimation based on first-passage failure time. 

 Boundary L=12 L=25 L=50 
MTTF 3.79315 10.75301 20.58544 

4. Conclusion 
In this paper, we presented a time-dependent Ornstein-Uhlenbeck Process for modeling degradation 
processes, with which the RUL can be estimated. This model considers not only the uncertainty in the 
observations, but also the interaction of the uncertainties at different times. Another contribution is to add the 
uncertainty in initial system state into the modeling work.  
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