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Prognostics of equipment state is one of the most important and difficult issue in Prognostics and Health 
Management (PHM) technology. In this paper, Relevance Vector Machine (RVM) and Particle Filter (PF) 
are used to analyse equipment state and predict its trend. RVM regression is used to extract the trend 
information of historical measurement data (trajectories). Then RVM based PF method is proposed to 
figure out the particle sampling distribution using RVM regression, also a new weight calculation method of 
particle is introduced based on the likelihood sum of whole trajectories. The proposed RVM based PF 
method can handle the situation that state-transition function of equipment state is unavailable, and it can 
provide satisfied prognostics of equipment state. 

1. Introduction 
In the Prognostics and Health Management (PHM), the prognostics of equipment state is the most 
important and difficult issue. If the information about the equipment state and its future evolution is 
available, it is possible for us to know when the equipment will lose function and opportunely schedule the 
maintenance plans at the most convenient and inexpensive times (Zio E., 2013). Motivated to achieve 
such a goal, an efficient and accurate computational algorithm is strongly needed to obtain the prognostics 
of equipment state using historical available data (Said A. Said, et al. 2011). Relevance Vector Machine 
(RVM) and Particle Filter (PF) are two highlighted prognostic methods which are accepted widely in the 
world.  
RVM is first introduced by Michael (Tipping M E., 2001). This model combines the theories of Markov, 
Bayesian, Automatic Relevance Determination and Maximum Likelihood, and obtains a sparse sum of 
kernel function to solve the problems of regression and classification. Compared to the Support Vector 
Machine (SVM), RVM has a significant reduction in the cost of computational complexity and consumption 
(Liu Xuemei, et al. 2010). In addition, the kernel function in RVM needs not to satisfy the Mercer condition, 
also a noise factor is added into the model expression to describe the uncertainty. Many scholars use 
RVM in different prognostic applications and achieve good results. In recent years, some improvements of 
RVM have been made to enhance the robustness of traditional RVM and make it more accurate when 
proceeding the big- noise data (Han and Zhao, 2011). 
PF based prognostic methods have been well studied in the applications of fault and remaining useful life 
prediction. It has a good adaption of non-linear and non-Gaussian data, but there are also some problems 
like particle degradation and impoverishment (Yang, et al. 2008), which decrease the accuracy of the 
prediction (Shenoy, et al. 2012). These two problems could be solved by choosing a good particle 
sampling distribution. Usually the state-transition function is used to figure out this distribution, but this is 
not always working well because of neglecting the information of measurement data. What’s more, in 
some situations, the state-transition function is not available. 
In some prognostic applications, only the measurement data of equipment state are available. In such 
cases, PF cannot work on it, but we can use RVM regression to generate the sampling distribution for PF. 
RVM regression can extract the evolution trend of equipment state from measurement data, and provide 
highly accurate interval estimation of equipment state. So this interval is a good choice of PF’s sampling 
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distribution. In this paper, this RVM based PF method is proposed to solve the prognostic problem in which 
state-transition function is not available. The remainder of this paper is organized as follows: section 2 
introduces the basic theories of RVM and PF; section 3 proposes the RVM based PF method, which 
contains the sampling distribution and particle’s weight calculation; test and verification of RVM based PF 
are made in section 4, also the comparison of two different weight calculation methods; section 5 
concludes the whole paper. 

2. Basic theories of RVM and PF  
RVM and PF are two of the most useful tools to do the regression and prognostic work. They are all under 
the framework of Bayesian theory. RVM can provide a sparse weighted sum of kernel function as the 
regression of equipment state. PF makes use of system state-transition function and observation data to 
update the posterior distribution of equipment state. The output of RVM is the foundation of RVM based 
PF.

2.1 RVM 

The model expression of RVM is almost the same like SVM, but the weight vector is calculated using 

Bayesian theory. Given the training data 1{ , }Mi i iy =x , where ix  is the input variable vector , iy  is the 

target value, M is the length of training data, the RVM regression expression is: 
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where 0 1[ , , , ]Nw w w=w is the weight vector, N is the number of relevance vectors (RV), ( , )nk x x is

the value of kernel function, 2(0, )i Nε σ is the independent and identically distributed noise, iu  is the 

regression value of iy .

If w and iε are directly estimated, there will be the problem of over-fitting, also the sparseness of model 

will not achieved. Therefore, the hyper-parameter iα  is introduced. Suppose that  w  obeys Gaussian 
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where 0 1[ , ,..., ]Nα α α= , Φ  is the matrix of kernel function. 

 and σ  are the parameters need to be estimated, the updating process is as follows:  
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where 2 1( )Tσ − −= +Σ Φ Φ A , 2 Tσ −= ΣΣΦ uμ , 1i i iiγ α= − Σ .

In the process of updating, most of iα will get close to infinity. The remaining iα are sparse, and the 

corresponding iw  are the RVs. The details of RVM could be found in paper (Tipping, 2001). 

2.2 PF 

The basic theory of PF is performed in many academic papers. In this paper, only the five important 
procedures are discussed: 
1. State transition and observation function  
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1( , )t t tx f x v−= (6)

( , )t t tz h x ω= (7)

where t  is the time step, tx  is system state, tz  is the measurement of tx , tv  and tω  are the noise of 

process and measurement, respectively. 

2. Particle Generation  
Particles are generated from the sampling distribution, in many cases, 1( | )t tp x x −  which can be 

obtained by Eq (6) is used as the sampling distribution, for its easier acquisition.  
3. Weight Update  

When new measurement is available, weight can be updated: 

1 ( | )i i i
t t t tw w p z x−= (8)

i
tw  is the weight of particle i  at time t , ( | )it tp z x  can be obtained by Eq (7). 

4. Resampling  
If many particles’ weights are too small, it means that these particles are useless. A resampling is 

needed to get more effective particles. The concept of Effective Sample Size (ESS) can be used to 
describe the degradation of particle: 
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where n  is the number of particles, 
tESS  reaches its max value n  when 1/ ,  1, 2,...,iw n i n= = . If 

tESS  is too small, the resample need to be taken. A threshold of 
ESST  should be set before PF start, 

usually / 2ESST n= , i.e., if 
t ESSESS T< , the resampling need to be taken. The detail resampling process 

could be found in paper (Arulampalam, et al. 2002). 
5. Prognosis  

The posterior distribution of tx  can be calculated as: 
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If n  is large enough, Eq (10) can effectively approximate the true value of 0:( | )t tp x z .

3. RVM based PF 
PF provides a satisfied prognostic result of equipment state, but it needs the state-transition function like 
Eq (6). In the actual engineering application, state-transition function is not always available; sometimes 
we can only get the trajectory of equipment state. In this case, PF method cannot work. To overcome this, 
RVM regression is used to take the place of state-transition function and generate the particle. The RVM 
based PF is different from traditional PF in two aspects: Sampling Distribution and Particle Weight.  

3.1 Sampling Distribution  

According to subsection 2.1, if the trajectories of equipment state are available, a regression (weighted 
sum of kernel function) could be provided by RVM. At each time step, the regression value of equipment 
state obeys Gaussian distribution: 
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Due to the high accuracy of RVM regression, tu  is very close to the posterior distribution. In addition, it is 

very easy to sample. So tu  is an good sampling distribution for PF. Let { }itp  denote the particles, where 
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1,2,..., ,  1,2,...,i n t T= = , n  is the number of particles, T  is  the time length of equipment state’s 
trajectory. So the sampling method is: 
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The state-transition function is not needed any more, because tu  can be obtained by RVM regression at 

each time step.  

3.2 Particle Weight

In the traditional PF, the weight is updated at each time step according to the likelihood of each particle. If 
the measurement noise is Gaussian noise, the weight is calculated as follows: 
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where ( )| i
t tL z p  is the likelihood of particle i

tp , tω  is measurement noise and i
tw  is the weight of i

tp .

However, for the trajectory of equipment state, this weight calculation method is not the best one. We 
should use the likelihood of whole trajectory to calculate the weight rather than a single time step. So Eq 
(13) could be improved as: 
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where ( )| i
sum t tL z p  is the sum likelihood of trajectory, i

tw ′  is the improved weight of i
tp .

The resampling and prognosis methods of RVM based PF are the same like traditional PF.  

4. Test and verification  
In this section, a series of simulated trajectories of equipment state is used to test and verify the RVM 
based PF. A comparison between two different weight calculation methods is made to show the 
effectiveness of RVM based PF. 

4.1 Data Generation Method

The following model is used to generate the trajectories of equipment state:  
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ty  is the state at time t , 0y  is the initial value,  a  , b  and σ  are the parameters which needed to be 

set according to the actual application, v is a random number generated from uniform distribution (0,1)U .

In this model, there are two parts: exponential part exp( )at  and the random part tR . ( )exp at  represents 

the normal degradation process and tR  represents the random damage with the probability p .

In this paper, 200 trajectories are generated using Eq (15). The parameters’ value and the plot of 
trajectories are shown in Table 1 and Figure 1, respectively: 
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Table 1: Value of each parameter 

Parameter a b p σ
Value 0.02 0.01 0.25 0.5 
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Figure 1: 200 trajectories of equipment state                     Figure 2: RVM regression of data 

Figure 2 is the result of RVM regression of 200 equipment state trajectories. The trajectories in Figure 2 
are smoother than the ones in Figure 1, mainly because RVM regression can restrain the measurement 
noise of data and is closer to the true value. 

4.2 Prognostic Result 

In this subsection, 200 equipment state trajectories are divided into two parts: the former 199 trajectories 
are used as the training data set, and the last one trajectory is used as the test set. Namely 199 particles 
(each trajectory is a particle) are available to predict the 200th trajectory. Figure 3 shows the predicted 
value and interval given the 1~50 time steps train data, while Figure 4 is the situation of 1~130 time steps 
training data. 
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Figure 3: Prognostic result (training length is 50)       Figure 4: Prognostic result (training length is 130) 
using Eq (14)                                                             using Eq (14)

To make a comparison of the different weight calculation methods in Eq (13) and Eq (14), we also use Eq 
(13) to figure out the prognostic results, which are shown in Figure 5 and 6. The Root-Mean-Square Error 
(RMSE) is used to evaluate the Prognostic results, shown in Table 2. 

( )RMSE w and ( )RMSE w′  represent the RMSEs using Eq (14) and Eq (13) respectively. We can see that 
the former ones are smaller than the later ones, especially when the training length is long. Because Eq 
(14) uses the sum of likelihood of training data to calculate the weights, when the training length is long, 
more information of likelihood is available. In this way, the likelihood is more accurate than the situation of 
short training length.
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Figure 5: Prognostic result (training length is 50)        Figure 6: Prognostic result (training length is 130) 
using Eq (13)                                                         using Eq (13)

Table 2: RMSE of two weight calculation methods 

Train length 50 130 
( )RMSE w 5.40 4.35 

( )RMSE w′ 5.70 7.11 

5. Conclusion 
This paper proposes an RVM based PF prognostics method, which can handle the situation that state-
transition function of equipment state is unavailable. RVM based PF uses RVM regression to figure out the 
sampling distribution, which makes the particles closer to the true value. A new weight calculation method 
of particle is presented, using the likelihood sum of whole trajectory rather than a single time step. Making 
full use of more trajectory likelihood information, this method is more accurate than the traditional one. 
The prognostic method proposed in this paper needs a large number of measurement data (trajectories) to 
achieve good results (actually one trajectory means one particle). The number of data could be set 
according to the estimation accuracy. This is probably the main disadvantage of this method. How to 
efficiently and accurately generate the particles based on small number of measurement data (trajectories) 
is the future topic of this method. 
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