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Motivated by the effectiveness of condition-based maintenance (CBM) for single-unit systems, we develop 
in this paper an opportunistic predictive maintenance model for a k-out-of-n deteriorating system. This 
model reflects the joint effects of economic dependence and CBM decision on the maintenance cost. 
Unlike most existing CBM models whose maintenance decision-making relies directly on a condition index 
of degradation level, we base the decision on the reliability of each component computed conditionally on 
its degradation level. This makes the model robust with respect to (w.r.t.) measurement errors, more 
efficient and easier to optimize compared to a corresponding degradation-based maintenance model. 

1. Introduction  
With the dissemination of condition monitoring techniques, CBM is nowadays a very promising approach 
to improve the durability, reliability and safety of industrial systems, and hence to bring out competitive 
advantages. Over the last few decades, many CBM models have been developed and successfully 
applied for single-unit systems or components (Jardine et al., 2006). However, in practice, an industrial 
system usually consists of several components which may stochastically, economically and/or structurally 
depend on each other (Cho et Parlar, 1991). Because of these interactions, the optimal maintenance 
strategy of multi-unit systems is not a simple juxtaposition of optimal strategies of their components 
(Castanier et al., 2005). As a consequence, numerous CBM models existing in the literature cannot be 
properly applied for multi-unit systems. This paper therefore aims to develop a new CBM model for a k-
out-of-n deteriorating system in the context of economic dependence among components. 
By definition, economic dependence implies that cost saving can be earned when several components are 
maintained together rather than separately (Dekker et al., 1997). Obviously, considering jointly both 
economic dependence and CBM decision can lead to significant saving in maintenance cost. However, the 
literature of such maintenance models is somewhat limited. Generally, these models are oriented toward 
two main approaches namely grouping maintenance and opportunistic maintenance (Dekker et al., 1997). 
In the former, pure CBM strategies are firstly applied for components to determine their optimal 
maintenance times, and then economic dependence among components is taken into account by grouping 
these optimal times (see e.g., (Bouvard et al., 2011)). In the latter, maintenance decisions usually follow 
control-limit rule with, in addition to proper preventive maintenance thresholds of components, one or 
several opportunistic thresholds introduced to exploit the economic dependence (see e.g., (Tian and Liao, 
2011)). Compared to the latter, the former does not well characterize the joint effects of CBM and 
economic dependence because of two relatively independent stages of maintenance decisions. This is 
why we focus only on opportunistic CBM models in the present paper. Moreover, unlike most existing 
models whose maintenance decision-making relies directly on a condition index of degradation level, we 
base the decision on the reliability of each component computed conditionally on its degradation level. We 
will show in following that using conditional reliability instead of degradation level can make the model 
more efficient, robust w.r.t. measurement errors, and easier to optimize. 
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The remainder of the paper is organized as follows. Section 2 is devoted to describe the system, and to 
compute the reliability of component and system. In Section 3, we present a reliability-based opportunistic 
predictive maintenance strategy and the associated cost model. The performance and robustness of this 
strategy are analyzed in Section 4 by comparing with a degradation-based opportunistic CBM strategy. 
Finally, we conclude the paper and give some perspectives in Section 5. 

2. System modeling and reliability analysis 
We consider a k-out-of-n system whose components degrade stochastically, independently and gradually 
over time. To describe such a system, one usually relies on lifetime models (Wang, 2002). These models 
are however disadvantaged in characterizing the system behavior, because they cannot reflect properly 
the intermediates states (i.e., degradation state) of system. To avoid this drawback, we base the system 
modeling on stochastic processes. This will helps us to compute more finely the component and system 
reliabilities. In the following, for an easier analysis, we divide the system into component level and system
level.

2.1 Component level 
Considering the i-th component, 1,2, , ,ni = …  of the system, its accumulated degradation level at time t can 
be summarized by a scalar random variable , .i tX  Without any maintenance action, this variable evolves as 
a continuous-time monotonically increasing stochastic process , 0{ }i t tX ≥ with ,0 0.iX = As a case study, a 
homogeneous gamma process with shape parameter iα and scale parameter iβ  is used to describe the 
degradation path , 0{ }i t tX ≥ (see also (van Noortwijk, 2009) for a thorough review on the use of gamma 
process in maintenance modeling). As such, the density functions of the degradation increment , ,i t i sX X−
between two times s and ,t 0 ,s t≤ ≤ is given by 

( ) ( ) 1
( ), { 0}

1
( (

,
)

1
)

i i i i
i i i

t s t s x
t s xi i

i t s
f x eα α β
α β β

α
− − − −

− ≥=
Γ −

 (1) 

where (0, )
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− −Γ = is the Euler gamma function. The behavior of such a degradation path 
depends closely on the couple of parameters ( ),,i iα β and its average degradation rate and variance are 
given by i i im α β= and 2 2

ii iσ α β=  respectively. 
The component i fails as soon as its degradation level exceeds a critical prefixed threshold ,iL its failure 
time is then expressed by ,inf { ., }i i t iXt Lτ = ≥ Thus, let , ( )i i t iXR u xτ  be its conditional reliability at time u
given its degradation level at time ≤ ,t u , ,i t iX x= it can be computed as follows (van Noortwijk, 2009) 
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where ( , )
1( , ) x
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− −Γ = denotes the incomplete gamma function. 

2.2 System level 
The considered system has k-out-of-n:F structure, i.e., it fails if and only if at least k of the n components 
fail. Let sτ  be the system failure time, it is equal to k-th smallest value among the set of component failure 
times 1 2, ,{ , }.nτ τ τ… Thus, the conditional reliability of the system 1: , 1:( )s n t nR uτ X x  at time u given the 
components degradation level at time t, 1: 1 2( , , , )n nxx x …x , is computed as (David and Nagaraja, 2003) 
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where , ( )i i t iXR u xτ  is given from (2), ,j
nC including ! ( !( )!)j

nC n j n j= − terms, denotes the sum over all 
permutations 1 2, ,{ , }ni i iτ τ τ… of the set of indices 1,2,{ },n… for which 1 2 ji ii < < < and 1 2 .j j nii i+ +< < <

3. Reliability-based opportunistic predictive maintenance 
We propose, in this section, an opportunistic predictive maintenance strategy for the aforementioned k-out-
of-n:F deteriorating system. For this strategy, maintenance decision-making is not based on a classical 
condition index of degradation level, but on the conditional reliability given from Section 2. Its performance 
is evaluated through a mathematical cost model developed on the basis of semi-regenerative theory. 
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3.1 Maintenance assumptions 
We assume that the degradation of each component in the system is hidden and the component failure is 
not-self-announcing. This requires then inspection operations on the total system to reveal the degradation 
level and the failure/working state of components. The inspection is assumed instantaneous, perfect, non-
destructive, and is incurred a cost .ic Two maintenance operations are available on each component: a 
preventive replacement (cost )p ic c≥ and a corrective replacement (cost ).c pc c≥  Each replacement 
operation puts the component back in the as-good-as-new state. Moreover, a replacement (either 
preventive or corrective) can only be instantaneously performed at inspection times. Therefore, a system 
downtime may appear within two successive inspection times, hence an additional cost is incurred from 
the system failure time until the next replacement time at a cost rate .dc Associated with a replacement, 
operations, such as dismantling and reassembly of the system, sending a maintenance team to the site, 
etc., are needed, and they incur a set-up cost .sc  Thus, economic dependence among components exists 
and one would like perform maintenance jointly on several components to save set-up costs. 

3.2 Maintenance strategy 
We aim at an opportunistic maintenance strategy representing both CBM decision and economic 
dependence. The CBM decision is integrated in the strategy through a pure preventive replacement 
threshold pR  of the component conditional reliability, while the economic dependence is taken into 
account by an opportunistic preventive replacement threshold .uR More in detail, a periodic scheme with 
period TΔ is used to inspect the health state of components/system. At an inspection time 

· ,  = 1,2, ,mT m T m= Δ …  we replace correctively the failed components, and preventively still surviving 
components if their conditional reliability at the next inspection time given the actual detected degradation 
level is less than a threshold pR  (i.e., , ( )i i Tm m i pXR T T x Rτ + Δ ≤ for the component i,  = 1,2, ,i … ). When a 
component is replaced (either preventively or correctively), this is the opportunity to replace other surviving 
ones. More precisely, if a replacement is scheduled on the component i, we also opportunistically replaced 
the component j i≠ if its conditional reliability at the next inspection time given the actual detected 
degradation level is less than a threshold uR  (i.e., , ) .( )j j Tmp m j uXR R T T x Rτ + Δ ≤< Thus, for this 
strategy, ,TΔ pR and uR  are the decision parameters to be optimized. To enhance the importance of the 
decision parameters, we call this strategy ( ), ,p uT R RΔ .
Based on the ( ), ,p uT R RΔ  strategy, a degradation-based opportunistic maintenance strategy namely 
( ), ,p uT Z ZΔ  can be easily given by replacing respectively the thresholds pR and uR by degradation 
thresholds pZ  and .uZ One can remark that the ( ), ,p uT Z ZΔ  strategy is less advantageous than 
( ), ,p uT R RΔ  strategy when the system is heterogeneous. In fact, in a heterogeneous system, a same 
reliability threshold for all components can correspond to different degradation levels of different 
components. Making a maintenance decision based on a reliability level is therefore more flexible than 
based on a same degradation level for all components. As a result, the ( ), ,p uT R RΔ  strategy is generally 
more profitable than ( ), ,p uT R RΔ  strategy. Of course, one can naturally think about a strategy with various 
degradation thresholds for different components. However, such a strategy seems infeasible in practical 
applications, because it is relatively complex. Moreover, optimizing the strategy is really intractable 
because of a large number of decision parameters. The ( ), ,p uT R RΔ  strategy, whose number of decision 
parameters is invariant for all size of system, is much easier to be optimized. 

3.3 Mathematical cost model 
To assess the performance of the proposed maintenance strategy, we focus on a widely used asymptotic 
criterion which is the long-run expected maintenance cost rate of the overall system (Bérenguer, 2008) 
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where ( )C t  denotes accumulated maintenance cost of the system up to time t. According to the structure 
of the Δ( ), ,p uT R R  strategy, ( )C t  can be given as 
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where ( )InspN t  is the inspections number in [0,t], , ( )i Prev tN  and , ( )i Corr tN  are respectively the number of 
preventive replacements (i.e., either opportunistic replacements or pure preventive replacements) and 
corrective replacements of the component i in [0,t] independently on operations performed on other 
components, , ( )G hN t  is the number of groups for which h components, 2 ,h n≤ ≤ are replaced at the same 
time in [0,t], and ( )W t  denotes the system downtime in in [0,t].
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A classical way to analytically evaluate (4) is to use the renewal-reward theorem to express the cost rate 
∞C on a renewal cycle of system (Tijms, 2003). However, in the present case, owing to very long renewal 

cycle in which too many scenarios of maintained system evolution may appear, applying this approach is 
almost impossible.  To overcome the problem, we can resort to semi-regenerative theory to express ∞C
on a semi-renewal cycle (Bérenguer, 2008). Such a cycle is much shorter and contains simpler 
maintenance scenarios compared to the renewal cycle, and as a result, it allows computing ∞C more 
easily. In fact, according to the ( ), ,p uT R RΔ  strategy, after an inspection at time ,  = 1,2, ,mT m …  the 
evolution of every component and hence of the system depends only on the revealed degradation levels. 
So, let us denote 1: , 0{ }n t t≥X the multivariate process representing the evolution of the maintained system 

1: , 1, 2, ,( , ,( ),n t t t n tX X X= …X  and ,i tX  is the degradation level of the i-th maintained component at time t), it 
is a semi-regenerative process. The discrete time process describing the maintained system states at 
inspection times 1: ,{ }n m m∈Y , where 1: ,1: , ,mn Tn m =Y X is then an embedded Markov chain of 1: , 0{ }n t t≥X  with 
stationary law 1: .( )nπ π= x  Thus, applying the semi-regenerative properties of the maintained system, 
expression (4) can be rewritten as (Bérenguer, 2008) 
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where 1T  is the first inspection time and πE is the expectation w.r.t. the stationary law π of 1: ,{ } .n m m∈Y
Computing the expectation quantities in (6) is quite complicated but classical, and we omit it here because 
of limit number of pages. Instead, we show the feasibility of (6) by giving an example on a 2-components 
series system. The following set of parameters is used: 1 1 2 2 1 22.25, 0.75, 1, 1, 10, 10,L Lα β α β= = = = = =

10, 5, 30, 100,and 25.i s p c dcc c c c= = = = =  Figure 1 illustrates the stationary law π  and the shape of the 
cost rate ∞C  when one of decision parameters is fixed at its optimal value. In fact, for the chosen data set, 
optimal decision parameters are , ,0.47, 0.87 and 2.4,p opt u opt optR R T= = Δ =  which correspond to the 
optimal cost rate , 29.1692.optC∞ =
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Figure 1: Shape of the stationary law π and the long-run expected maintenance cost rate ∞C  of a 2-
components series system under ( ), ,p uT R RΔ  strategy 
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4. Performance and robustness analysis  
This section aims to analyze more deeply the performance and the robustness of the ( ), ,p uT R RΔ  strategy 
through sensitivity studies. For a simpler analysis, the 2-components series system in Section 3.3 is 
reused, but its characteristic parameters or maintenance costs can be successively changed depending on 
different case studies. The ( ), ,p uT Z ZΔ  strategy represented in Section 3.2 is used as a benchmark. 

4.1 Sensitivity to the maintenance costs 
We vary respectively one of intervention costs (i.e., , , , and ),i s p dcc c c fixe the others and we investigate the 
evolution of optimal cost rate of both ( ), ,p uT R RΔ  strategy and ( ), ,p uT Z ZΔ strategy. Figure 2 shows the 
results. We can remark that the optimal cost rate of ( ), ,p uT R RΔ  strategy is always lower than the one of 
( ), ,p uT Z ZΔ strategy. This affirms the advantage of the conditional reliability index over the degradation 
level in CBM decision-making in the considered case. However, this advantage is decreased for smaller 
inspection cost and downtime cost rate, or for higher setup cost and preventive replacement cost. 
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Figure 2: Evolution of optimal maintenance cost rate w.r.t. the variation of intervention costs 

4.2 Sensitivity to the system characteristics 
Here, the degradation speed 1m  and variance 2

1σ of component 1 are respectively varied, other parameters 
are fixed, and we observe the optimal cost rate evolution of the considered strategies. The ( ), ,p uT R RΔ
strategy is still more profitable than the ( ), ,p uT Z ZΔ strategy (see Figure 3). However, both strategies give 
almost the same profit for a quasi-homogeneous system (see left figure below) or for a heterogeneous 
system whose degradation variances of different components are too different (see right figure below). 
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Figure 3: Evolution of optimal maintenance cost rate w.r.t. the variation of degradation speed and variance 

4.3 Sensitivity to the errors made on maintenance strategy decision parameters  
In many practical applications, the estimation of system parameters may be imprecise because of noisy 
measurements or the lack of data. This can lead to errors in determining the optimal decision parameters 
of a maintenance strategy, and hence a loss in its performance. This section therefore aims to examine 
the impact of such an error on the performance of ( ), ,p uT R RΔ  strategy. For this end, we compute its 
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maintenance cost rate when the decision parameters vary around theirs optimal values, and we compare 
with the optimal cost rate of ( ), ,p uT Z ZΔ  strategy. Figure 4 shows the results. Obviously, the performance 
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Figure 4: Evolution of optimal maintenance cost rate w.r.t. the variation of decision parameters error 

of the ( ), ,p uT R RΔ  strategy decreases w.r.t. decision parameters error. However it remains better than the 
( ), ,p uT Z ZΔ  strategy when the error is not too high. This shows the robustness of the ( ), ,p uT R RΔ  w.r.t. 
measurement errors. Moreover, the strategy is more robust for smaller variance of degradation process.  

5. Conclusion and perspectives 
We propose in this paper a reliability-based opportunistic predictive maintenance model which can 
characterize both aspects of CBM decision and economic dependence among components of system. The 
numerical results show that the proposed maintenance model is suitable for a k-out-of-n deteriorating 
system and that using conditional reliability instead of degradation level in maintenance decision-making 
can make the model simple, profitable, robust w.r.t. measurement errors, and easy to optimize.  
Despite these advantages, the proposed maintenance strategy is still a “semi-blind” strategy because the 
global system health state is not taken into account in maintenance decisions. The future work therefore 
aims to develop a reliability-based opportunistic maintenance strategy considering the global system 
health. Moreover, for a complete study, other types of interactions among components (i.e., stochastic 
dependence and structural dependence) should be introduced into the model. 
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