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It is universally accepted that physics-based models provide more accurate estimates of reliability than 
statistics-based model especially when the physics of failure of the units are well-understood.  However, 
the underlying assumptions of such models regarding the deterministic nature of its parameters limit their 
applications, implementations and generalization. In this paper, we propose a physic-based accelerated 
degradation model that considers probability distributions of its parameters. The degradation path is then 
determined, and the first passage distribution, failure time function and its parameters’ estimation are 
obtained accordingly. The model is then used to estimate competing risks at normal operating conditions. 
A numerical example is provided to demonstrate the use of the model and validate its estimates. 

1. Introduction 
Researches have presented a wide variety of models for predicting the life span of materials and 
components using accelerated degradation testing (ADT). In general, there are three different kinds of 
degradation models: physics-statistics-based models, parametric statistics-based models and 
nonparametric statistics-models. The physics-statistics-based models have a merit of understanding the 
degradation mechanism of material and components which result in more accurate predictions of the 
reliability metrics. Physics-of-Failure (PoF) are proposed by Rome Air Development Center (RADC) of the 
USA Air Force to address the growing complexity of military equipment, and the consequent higher 
numbers of observed failures. Thereafter the PoF have been extensively studied in reliability area and 
achieved significant successes (Ebel, 1998). Alpern and Lee, (2008) identify the moisture concentration at 
the weakest material interface as the critical parameter for the defect onset, and predict the life of 
moisture-induced delamination between the modeling compound and die surface in plastic packages using 
an ordinary 1-D diffusion model. Jin et al. (2012) propose a novel reliability estimation framework in terms 
of physics of failure based on the relationship between the physics performance and its failure 
mechanisms. Based on the failure model, Jin et al. (2013) develop ta life prediction method for a 
momentum wheel in a dynamic covariate environment. Reliability Information Analysis Centre (RIAC) 
presents an approach for microelectronic system reliability assessment and qualification based on PoF in 
a sum-of-rate to account for multiple mechanisms (Salemi et al., 2008). 
Due to uncertainties and the stochastic nature of failures, the PoF cannot be generalized or effectively 
applied in many situations. So the Probabilistic Physics of Failure (PPoF) have been introduced in the 
reliability field (Mendel, 1996). There are three main sources of variations: (1) environmental factors that 
arise from field environment or testing conditions; (2) the unknown and dynamical value of practical 
mission profiles; (3) the variation caused by manufacturing processes (Matic and Sruk, 2008). Hall and 
Strutt (2003) present PPoF for both Eyring model and Power-Law model considering environmental 
parameters (e.g. temperature, humidity). Chatterjee and Modarres (2012) present a PPoF approach for 
estimating tube rupture frequency in steam generator of water reactor, which regards PoF models as a 
probabilistic form associated with environmental conditions, geometrical and material properties. Haggag 
et al. (2000) use an PPoF approach to predict the reliability of high-performance chips that considers the 
activation energies follow a finite binomial distribution. Even though there are several PPoF models for life 
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time prediction at different operating conditions, there are limited (or non-existent) degradation functions of 
PoF approaches which consider both uncertainties of material properties and their activation energies. 
Extensive research shows that the activation energy can be described by a probabilistic distribution but 
most of the PPoF treat it as a deterministic characteristic of the material.  
In this paper, we propose a degradation function of PPoF which considers the probability distributions of 
materials characteristics. Thereafter, this function is modeled as a Brownian process and its parameters 
are estimated accordingly. We then develop a competing risk PPoF degradation model, when units 
exhibits several failure modes, and obtain the corresponding reliability function. A simulation example is 
demonstrated for model validation. 

2. Probabilistic physics of failure degradation models 
PoF degradation models are usually developed for specific applications and conditions. For example, there 
are several PoF models for electromigration of semiconductors which describe the Time Dependent 
Dielectric Break Drown (TDDB), Hot Carrier Injection (HCI) and Negative Bias Temperature Instability 
(NBTI). More generalized performance degradation models of PoF include the Arrhenius dependence, 
Power dependence, exponential dependence and Eyring dependence models. In this paper, we consider 
the Arrhenius relationship given by Eq. (1).  

β= − −( ) (0) exp( / )D t D t E T                                                                                                                          (1) 

( )D t = degradation value at time t, (0)D = initial degradation value, β = characteristic of the product or 
properties of material, E = activation energy, T = operating temperature in Kelvin. 
We consider two sources of variations: the first is due to unit to unit product characteristics β and the 
activation energy variation E . Therefore, it is reasonable to assume that β and E to be distributed by two 
Normal distributions, say 2

1 1~ ( , )E N μ σ and 2
2 2~ ( , )Nβ μ σ as described in (Braun and Burnham, 1987, 

Anthony and Howard, 2004).  
Taking the logarithm of Eq. (1) and setting (0) 0D = we obtain 

β= − −ln ( ) ln lnED t t
T

                                                                                                                                   (2) 

Expanding lnβ using Taylor series about 2β μ= , Eq. (2) becomes   

β
μ

= ≈ − − = −
2

(ln ) ln ( ) ln lnEY t D t t W t
T                                                                                                          (3)                                 

It is known that the sum of two normal distributions also follows a normal distribution, so the distribution of 
W is:

μ μ σ σ− + 2 2
1 2 2 1~ ( / / ,1 / )W N T T                                                                                                                  (4) 

3. Stochastic process model of PPoF 

Let ( )L t denotes the degradation path of a specific unit. We also assume that ( )L t is a decreasing function 
which has a failure threshold value Lγ therefore, the lifetime could be obtained by the First Passage Time 
(FPT), which is, 

ω= inf{ | ( ) }Z t L t                                                                                                                                        (5) 

As stated earlier, there are uncertainties in the degradation data which can be included in PoF model:     

( ) ( ) ( )L t Y t tε= +                                                                                                                                            (6) 

where ( )Y t is the actual degradation value, ( ) ( )t B tε λ= is the uncertainty in the degradation measurements, 
( )B t is a standard Brownian motion. We rewrite Eq. (6) as  

(ln ) (ln ) (ln ) ln (ln )L t Y t t W t B tε λ= + = − +                                                                                                       (7) 

where 2 2
1 2 2 1~ ( / / ,1 / )W N T Tμ μ σ σ− + .

According to Basak and Balakrishnan (2011), Eq. (7) is a Brownian motion process with initial value w ,
drift λ and diffusion lnt− . It is known that for a monotone degradation path the First Passage Time (FPT) 
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distribution follows an Inverse Gaussian (IG) distribution. In our case the FPT distribution of Eq. (7) and its 
unreliability function are obtained as,  

3 2/ 2 (ln ) exp( (ln 1) )
(ln ; , 1, ) ,(ln 1)

2(ln )
t L W t L W

f t L W t
t L W

γ γ
γ

γ

λ π λ
λ

− − − − − +
− = >

− −
                                                  (8) 

and

2(ln ; , 1, ) (ln 1) (ln 1)
ln ln

F t L W t L W e t L W
t L W t L W

λ
γ γ γ

γ γ

λ λλ −− = Φ − − − + Φ − − − +
− − − −

                    (9) 

where
2

21( )
2

z

e dz
τ

τ
π

−

−∞

Φ = , w is the initial value, Lγ is the threshold value, λ is the scale parameter, 

and μ λ+ is the mean. 

4. Parameters’ estimation 

Consider a failure mode k which has a degradation value , ,k j iL for path j  at time it
( 1 , 1 , 1k Q j M i N= = = ). According to the properties of Brownian motion, the increments are i.i.d.
distributed by a normal distribution, therefore the p.d.f. of increments for degradation path j of unit k is
given by (Tseng and Peng, 2007), 

, ,
, , , ,

ln1( )
ln ln

k j i i
k j i k j i

k i k i

L t
f L

t t
φ

λ λ
Δ + Δ

Δ =
Δ Δ

                                                                                                    (10) 

where  
2

21( )
2

x

x eφ
π

−
= , , , , 1 , ,i k j k j i k j iL L L+Δ = − , 1ln ln lni i it t t+Δ = − and kλ is the drift for path j of failure mode k .

In order to estimate the parameters of Brownian motion process, we apply MLE method to Eq. (10) for all 
the paths of failure k . The log-likelihood function for failure mode k is

, ,
1 1 1 1

ln ln ln ln ln ( ln ) / ln
M N M N

k k i k j i i k i
j i j i

L MN t L t tλ φ λ
= = = =

= − − Δ + Δ + Δ Δ                                                      (11) 

The unknown parameter k̂λ is obtained by solving / 0k kdL dλ = , and obtain     

1/3
2

, ,
1 1

2
, ,

1 1

13 ( ln ) / ln
ˆ

1(3 ( ln ) / ln )

M N

k j i i i
j i

k M N

k j i i i
j i

L t t
N

L t t
N

λ = =

= =

Δ + Δ Δ
=

Θ Δ + Δ Δ
                                                                                           (12) 

where ( )xΘ is the root of ,( 1 ), 1,3, 3xy xe y θ= − ≤ < ∞ = − − .

5. PPoF Competing risk model  
We consider a system with k failure modes represented by ( 1... )k k Q= , and develop its Competing Risk 
Model (CRM). Based on the aforementioned assumptions, under the competing risk model, the system 
fails when any of the failure modes reaches the corresponding threshold first. Therefore, the failure 
function of the system is the product of each resulting failure function. We further assume that the modes 
are due to the significant variations of activation energies and material properties. That is, units having the 
same failure mode are deemed to have the same ˆ

kW . Based on Eq. (9), the failure function of failure 
mode k is given by,  

2(ln 1) (ln 1)
ln lnk k k

k k

eF t L W t L W
t L W t L Wγ γ

γ γ

λλ λ−= Φ − − − + Φ − − − +
− − − −

                                  (13)                            

We obtain the CRM of the failure function (Elsayed, 2012) as  
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∏

∏
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6. Mote Carlo simulation of PPoF competing risk model 
We consider a unit that exhibits ten different failure modes and generate 10 paths for each mode. The 
threshold is set to 1 for all the units. Each path is given by a Brownian motion process with diffusion -lnt ,
drift 2 and initial value ~ (2,1)kW N  as shown in Figure 1 and the simulation flow chart is shown in Figure 2 

Figure 1 Generating degradation paths for all the units 

We assume that these failure modes occur due to the variation of parameter kW , which has a known 
distribution. We use Eq. (12) to estimate the drift k̂λ for every failure mode. The failure functions can be 
obtained by Eq. (13) accordingly and the CRM function is given by Eq. (14). 
Finally, the failure function of the CRM is obtained as 
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=1( 10)k k

= −1 1(ln ) lnY t W t = −10 10(ln ) lnY t W t

λ= − +1 1 1(ln ) ln ( )L t W t B t λ= − +10 10 10(ln ) ln ( )L t W t B t
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=

= − −∏
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Figure 2. Flow chart of the process used in the competing risk model of PPoF   

Table 1: Results of estimation  

Parameter 1 2 3 4 5 6 7 8 9 10

0.74 1.54 0.9 1.41 0.59 0.6 0.99 0.74 0.74 1.26

0.12 0.08 0.01 0.12 0.02 0.22 0.21 0.21 0.01 0.12

2.67 1.33 1.6 1.33 2.58 1.22 0.94 2.55 1.58 2.36

k̂λ
ˆ| | /λ λ λ−
kW

7. Summary 
PPoF model has its merits for predicting reliability based on degradation observations. In this paper, the 
variation of individual units, the activation energy and uncertainty in degradation measurements are 
considered in the traditional Arrhenius degradation function. The corresponding FPT distribution and its 
failure function are developed. We also develop a failure function of the CRM for different failure modes 
and present a simulation example to demonstrate the application of the proposed model. 
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