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With the aim of tracking the deteriorating process of a specific individual multi-state system consisting of 
more than one multi-state component, a dynamic reliability assessment method which can utilize system-
level observation history to dynamically update the reliability function of multi-state degraded systems is 
developed in this paper. The current and future state probabilities of components in a specific multi-state 
degraded system can be updated via the proposed recursive Bayesian formula. The effectiveness and 
accuracy of the proposed method are demonstrated via a water piping system. 

1. Introduction 
Even though the binary state system reliability theory has long been adopted in engineering practices, as 
engineered systems designed toward larger scale, more complex, and higher precision, it is extensively 
observed that systems or components may manifest multiple states from working perfectly to completely 
failed, during their deterioration process (Lisnianski and Levitin, 2003). Many newly developed methods, 
like extended decision diagram-based method (Shrestha and Xing, 2008), stochastic process (Li and 
Pham, 2005), universal generating function (UGF) (Ushakov, 1986), recursive algorithm (Li and Zuo, 
2008), etc., have been used to facilitate the reliability and performance evaluation for a variety of MSSs.    
However, it is noteworthy that the aforementioned studies are on the basis of traditional time-based 
reliability models which compute the reliability of an MSS from the “population” or “statics” perspective. Put 
another way, state transition intensities/probabilities, distribution of sojourn time at a certain state, and 
many other quantities that characterize stochastic behavior of a system are derived from historical data 
collected from a large population of identical systems, and the reliability assessment of a system over time 
is conducted purely based upon these statistic information (Lisnianski et al., 2012). For a specific individual 
system, if additional useful knowledge or information related to the stochastic (deteriorating) behaviors of 
the system becomes available, uncertainty associated with the deterioration of this specific system can be 
further reduced so as to lead a more precise reliability assessment for this system. Bear this general 
concept in mind, dynamic reliability herein is defined as the reliability function or model of a specific system 
which can be updated or modified by collecting additional useful knowledge or information related to the 
stochastic (deteriorating) behaviors of the system after the system is put into use.
Most reported works on dynamic reliability assessment focus on the situation where knowledge or 
condition monitoring information collected from a system/component only reflects, either directly or 
indirectly, the current condition and further evolution of the system/component itself (Wang and Christer, 
2000). However, as a majority of engineered systems consist of more than one component and the 
condition and evolution of a system are eventually determined by its components, tracking and utilizing 
both component-level and system-level knowledge or condition monitoring information during the system 
operation stage is expected to improve the accuracy of dynamic reliability assessment for this specific 
individual system. Our focus in this work is to utilize system-level inspection data of a specific individual 
MSS to identify the states of its multi-state components and further update the reliability of these 
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components, and then update the reliability function of the system. This issue is very commonly 
encountered in engineering practices, for example, components’ states are oftentimes unobservable, but 
the system state can be directly observed. However, several combinations of components’ states may 
result in the same system state. In this case, identifying the possible state of each component in the 
system enable engineers to update the dynamic reliability function of this system and predict system’s 
further behavior and remaining useful life. In addition, it also allows maintaining, as early as possible, the 
seriously degraded components which have significant contributions to system performance or may cause 
failure of the entire system. To the best of our knowledge, this issue has rarely been addressed in 
literature. In this paper, by utilizing all the system-level observation history, a recursive Bayesian method is 
put forth to recursively identify the possible states of components and further update the reliability function 
of the system. 
The remainder of this paper is organized as follows. Section 2 introduces the specific problem we study in 
this work. The details of the proposed recursive Bayesian method along with the formulation of dynamic 
reliability function, and state probabilities of both system and components are elaborated in Section 3. A 
numerical example is presented in Section 4 to demonstrate the effectiveness of our proposed method, 
and it is followed by a brief closure in Section 5. 

2. Problem Statement 
The MSSs investigated in this paper consist of multiple components. Every component has multiple 
discrete states that could be distinguished by either performance or level of degradation. For example, a 
flow transmission component could have a set of states characterized by volume flow rate, say 2.0 
tons/min, 3.0tons/min, and 5.0tons/min. Another example is that the health condition of a bearing within a 
gearbox can be roughly classified into several states from perfectly working to completely failed, say 
“normal”, “medium damaged”, “seriously damaged”, and  “completely failed”. The entire system manifests 
multiple states with different combinations of components’ states. Most often, more than one combination 
of components’ states may result in the same system state. A simple water piping system is exemplified 
here to illustrate this argument. Suppose the water piping system is comprised of three pipes. Units #1 and 
#2 are connected in parallel and then serially connected with unit #3. The possible flow transmission rates 
of each component are tabulated in Table 1.  Unit #1 has two states while units #2 and #3 each has three 
states. The transition time of a component from its better state to lower one is assumed to follow 
homogeneous continuous time Markov process. The transition intensities of components are tabulated in 
Table 2, and the deterioration processes of these units are statistically independent. The performance SG

of the entire system is completely determined by performances of components lG ( 1,2,3l = ). Based on the 
system configuration and property of components’ performance, one has 1 2 3min{ , }SG G G G= + . The 
system states distinguished by the flow transmission rates along with the associated combinations of 
components’ states are given in Table 3. As observed in Table 3, some system states, e.g. states 5, 4, 3, 
2, and 1, are caused by multiple combinations of components’ states. 

Table 1: Flow transmission rates of components 
(tons/min) 

Unit ID State 1 State 2 State 3 
#1 0.0  2.5  /
#2 0.0  2.0  3.5 
#3 0.0  4.0  6.0 

Table 2: Transition intensities of components in 
the studied water piping system (month-1) 

Unit ID (3,2)
lλ (3,1)

lλ (2,1)
lλ

#1 — — 0.04 
#2 0.05 0.08 0.1 
#3 0.035 0.06 0.09 

Table 3: The system states and the associated combinations of components’ states 

System State ID Performance  Components’ State Combination (unit #1, unit #2. unit #3) 
7 6.0 tons/min {(2, 3, 2)} 
6 4.5 tons/min {(2, 2, 3); (2, 3, 2); } 
5 4.0 tons/min {(2,3,2); (2, 2, 2)} 
4 3.5 tons/min {(1, 3, 3); (1, 3, 2)} 
3 2.5 tons/min {(2, 1, 3); (2, 1, 2)} 
2 2.0 tons/min {(1, 2, 3); (1, 2, 2)} 
1 0.0 ton/min {(2, 3, 1); (2, 2, 1); (2, 1, 1);(1, 3, 1); (1, 2, 1); (1, 1, 3);(1, 1, 2); (1, 1, 1)} 

536



In some engineering practices, it might be impossible to observe condition of components, for example it is 
difficult to setup sensors or devices to detect the status of bearings and gears of a gearbox as they are 
inside the gearbox, but it is very easy to track and observe the condition of the entire gearbox via critical 
signals correlated with the system condition, like vibration signals and oil debris. Instead of directly 
monitoring condition of states of components, the condition monitoring information from system level 
becomes important to reflect states of components. Once components’ states are identified, the reliability 
function of the entire system can be updated so as to predict the system’s future behavior in a more 
accurate manner. For example, if the system is detected to be at state 4, the unit #1 and unit #2 must be at 
state 1 and state 3 respectively. The unit #3, however, could be either at its state 2 or at its state 3 which 
of course lead to different deterioration patterns of both unit #3 and the system in residual lifetime. 
Identifying the current state of unit #3, therefore, becomes critical to update the reliability function of the 
system, and this paper severs this purpose.  
Before introducing the proposed method to assess the dynamic reliability of a monitored MSS, some 
assumptions used in this work are summarized as follows: 
(1) An MSS consists of M  components and has finite number of states 1 2{ , ,..., }

SN
S S S=S , from perfectly 

working condition to completely failed. SN  denotes the total number of states of the MSS; 
SN

S and 1S

represent the best and the worst states of the MSS respectively. 
(2) The component l  in the MSS could have more than two states denoted as ,1 ,2 ,{ , ,..., }

ll l l l ns s s=s , where 

ln  the number of possible states of component l ; , ll ns  and ,1ls  are the best and the worst states of 

component l  respectively. 
(3) The transition intensities or the deterioration model of component l  from its state i  to state j
( 0 j i≤ ≤ ) is known in advance. This assumption is practical as data collected from either experimental 
tests or the field for each component can be used to choose deterioration model and estimate unknown 
parameters in deterioration model. 
(4) The structure function ( )φ ⋅  of an MSS with respect to states of components is known. The state of an 
MSS at any time instant t can be, therefore, determined by the combination of components’ states at any 
time instant t  as ( )1 2( ) ( ), ( ),..., ( )S MX t X t X t X tφ= . Tools, like the universal generating function (UGF) 

(Lisnianski and Levitin, 2003) etc., provide computationally efficient way to find out combinations of 
components’ states with respect to system state.  

(5) As multiple combinations of components’ states may lead to the same system state, i.e. 
1

M
S ll
N n

=
< ∏ .

Let ,i jS  (1 ij L≤ ≤ ) indicate the j th combination of components’ states when the system is at its state i

and iL  denote the total number of combinations of components’ states at system state i . ,i jQ  is a vector  

containing components’ state of the j th states combination ,i jS . Hence, one has , ( )i j ll ∈Q s  representing 

the state of component l  in the j th combination of components’ state ,i jS  when the system is at state i .

(6) The states of components of a specific individual MSS at any time instant t  after the MSS being put 
into use are unobservable; whereas the system condition is observable during operation stage by utilizing 
condition monitoring techniques, and it is assumed in this work that the system state can be immediately 
and directly identified at any inspection time. The state of the specific individual MSS at the k th inspection 
time is denoted as ( )S kX t ; while ( )S kX t  consisting of { }1 2( ), ( ),..., ( )S S S kX t X t X t   represents a sequence of 

system states observed at k inspection time instants. The inspection interval could be either periodical or 
non-periodical. 
(7) Assume that there is no maintenance activity intervening the deterioration process of an MSS.  

3. Proposed Dynamic Reliability Assessment Method 

3.1 Estimation of Current Status 
At any inspection time kt , the current system state ( )S kX t along with observation history 1( )S k −X t  of a 
specific individual system is available. The objective here is to identify the states of components at current 
time instant by using these sequential system-level inspection data.  The associated conditional probability 
is denoted as:  

, , 1Pr( ( ) | ( )) Pr( ( ) | ( ) , ( ))S k i v S k S k i v S k i S kX t S X t S X t S −= = = =X t X t                                                                       (1) 
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where iv L∈ , 1k ≥ . Eq.(1) represents the probability of the inspected system staying at its state i  with the 

v th combination of components’ state given the observation history up to kt . The state of component l  at 

time instant kt  is denoted as , ( )i v lQ  where ,1 ( )i v ll n≤ ≤Q . , 1Pr( ( ) | ( ) , ( ))S k i v S k i S kX t S X t S −= = X t separates 

the observation history into two portions: the inspection data at time instant kt  and these before kt . By 
utilizing the following Bayes’ rule, the conditional probability of Eq.(1) can be further expanded as: 

, 1 , 1
, 1

1

Pr{ ( ) | ( ) , ( )} Pr{ ( ) | ( )}
Pr( ( ) | ( ) , ( )) ,

Pr{ ( ) | ( )}
S k i S k i v S k S k i v S k

S k i v S k i S k
S k i S k

X t S X t S X t S
X t S X t S

X t S
− −

−
−

= = ⋅ =
= = =

=
X t X t

X t
X t

        (2) 

It is obvious that the first term in the numerator of Eq.(2) equals to one as event ( )S k iX t S=  contains 

,( )S k i vX t S= . The second term in the numerator of Eq.(2) can be expanded as: 

, 1 , 1 , 1 , 1
1

Pr{ ( ) | ( )} Pr{ ( ) | ( ) } Pr{ ( ) | ( )},
jL

S k i v S k S k i v S k j m S k j m S k
m

X t S X t S X t S X t S− − − −
=

= = = = ⋅ =X t X t                            (3) 

where 1 ,( )S k j mX t S− =  indicates that at the ( 1)k − th inspection time, the system is at state j  with the m th

combination of components’ state. The denominator of Eq.(2) can be written as: 

1 , 1 , 1 , 1
1 1

Pr{ ( ) | ( )} Pr{ ( ) | ( ) } Pr{ ( ) | ( )}.
ji LL

S k i S k S k i n S k j m S k j m S k
n m

X t S X t S X t S X t S− − − −
= =

= = = = ⋅ =X t X t                         (4) 

By plugging Eqs.(3) and (4) into Eqs.(2) and (1), one has: 

, 1 , 1 , 1
1

,

, 1 , 1 , 1
1 1

Pr{ ( ) | ( ) } Pr{ ( ) | ( )}
Pr( ( ) | ( )) .

Pr{ ( ) | ( ) } Pr{ ( ) | ( )}

j

ji

L

S k i v S k j m S k j m S k
m

S k i v S k LL

S k i n S k j m S k j m S k
n m

X t S X t S X t S
X t S

X t S X t S X t S

− − −
=

− − −
= =

= = ⋅ =
= =

= = ⋅ =

X t
X t

X t
                        (5) 

It is noted that Eq.(5) is a recursive Bayesian formulation in which the probability of  the system staying at 
its state i  with the v th combination of components’ state at inspection time kt  is a function of the 
probability of the system staying at its state j  with the m th combination of components’ state at 
inspection time 1kt −  and the probability of the system transiting from the state ,j mS  to  ,i nS  within the 

inspection interval 1[ , ]k kt t− . Since we have assumed that at the beginning of operation stage, the system 
and its components are in brand new condition, the initial condition of Eq.(5) for the recursive process is 
set to ,Pr{ (0) } 1

S NSS N LX S= = .

With the assumption that state transitions of components possess Markov property, that is, the future 
states which a component will degrade to is only dependent with the present state, but independent with 
the past states. , 1 ,Pr{ ( ) | ( ) }S k i n S k j mX t S X t S−= =  is, therefore, statistically independent with  

1 , 1Pr{ ( ) | ( )}S k j m S kX t S− −= X t . If the stochastic behaviors of components are also statistically independent of 

one another, one has: 

, 1 , , 1 ,
1

Pr{ ( ) | ( ) } Pr{ ( ) ( ) | ( ) ( )},
M

S k i v S k j m l k i v l k i m
l

X t S X t S X t l X t l− −
=

= = = = =∏ Q Q                                                     (6) 

where ( )l kX t  is the state of component l  at time instant kt ; , ( )i v lQ  is the state of component l  in the v th

combination of components’ states ,i vS  when the system is at its state i . Obviously, the state transition 

probability of system is transformed into a product of state transition probabilities of components.   
To compute the probability of state transitions of a component, many well-established stochastic models, 
e.g. Markov model, Petri net etc., can be used. We only briefly review homogenous Markov model which 
have been extensively adopted in MSS modelling (Lisnianski and Levitin, 2003). If the degradation of 
components is governed by homogenous Markov model, the transition time between any pair of states of a 
component is assumed to be exponentially distributed. The probability , 1 ,Pr{ ( ) ( ) | ( ) ( )}l k i n l k i mX t l X t l−= =Q Q

of component l  can be derived by solving the corresponding a set of Kolmogorov differential equations. 
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By substituting Eq.(6) into (5), the probability of components’ states at the current inspection time kt  can 
be derived by utilizing all the system-level observation history up until kt . It should be noted that the results 
will vary from system to system even if they pass through the same states but with different transition time 
instants. This is the unique feature of our proposed method which is able to track the deterioration of every 
specific individual system rather than a population of identical systems.  

3.2 Prediction of Future Status 
If the possible states of components and their associated probability are known at the latest inspection 
time kt , the behavior of the components and the specific individual system in the future residual lifetime 
can be more precisely predicted. This is achieved by considering the component state vector making 
transition from the current state to the next. If the system is observed at state i  at the current inspection 
time, the probability of the system being in state j ( {1,2,..., }, Sj i i N∈ ∈ ) at the end of a specified time span 

,t  can be computed by: 

{ } { }, ,
, , ,

1 1
Pr{ ( ) | ( )} Pr ( ) | ( ) Pr ( ) | ( ) .

j iL L

S k j S k S k j m S k i n S k i n S k
m n

X t t S X t t S X t S X t S
= =

+ = = + = = ⋅ =X t X t                       (7) 

where ,t  is the time elapsed after kt . The probability { },
, ,Pr ( ) | ( )S k j m S k i nX t t S X t S+ = =  can be computed in 

the same manner as Eq.(6), but the only difference worth noting is to replace kt  and 1kt −  of Eq.(6) by 
,

kt t+  and kt , respectively. The probability of component l  staying at its state 

j ( ,{1,2,..., }
{1,2,..., max ( ( ))}

i
i nn L

j l
∈

∈ Q ) in the rest of lifetime can be computed by: 

{ } { }, ,
, , , ,

1
Pr{ ( ) | ( )} Pr ( ) | ( ) ( ) Pr ( ) | ( ) .

iL

l k l j S k l k l j l k i n S k i n S k
n

X t t s X t t s X t l X t S
=

+ = = + = = ⋅ =X t Q X t                        (8) 

where ,{1,2,..., }
max ( ( ))

i
i nn L
l

∈
Q  indicates the highest state of component l among all the combinations of 

components’ states when the system is at state i  at inspection time kt .
Hence, the dynamic reliability function of the system in the future lifetime is expressed as: 

( )
, ,( ) Pr{ ( ) | ( )}

S k

SF

X t

S k j S k
j n

R t X t t S
=

= + = X t ,                                                                                                         (9)  

where SFn is the threshold state that the system getting into a state lower than SFn  can be viewed as 
failure.

4. Numerical Example 
The illustrative example of a water piping system introduced earlier is presented here to demonstrate the 
use of the proposed dynamic reliability assessment method. By using the Markov model and universal 
generating function (Lisnianski and Levitin, 2003), the system state probabilities over time are computed 
and depicted in Figure 1 by the dot lines with marks. It should be noted that to avoid confusion, only states 
1 to 4 are presented here and will be compared with updated state probabilities after inspection.  
Per the proposed method in this work, both the state probabilities of components and systems can be 
updated dynamically for an individual specific system if the system state could be observed during the 
lifetime of the system. Suppose a specific individual system is observed in its state 4 at 1 0.8t = month after 
being put into use. However, there are two possible combinations of components’ states as shown in 
Table 2. Based on Eq.(5), one has: 1 4,1 1 4Pr( ( ) | ( ) ) 0.7778S SX t S X t S= = = and 1 4,2 1 4Pr( ( ) | ( ) )S SX t S X t S= =

0.2222= , indicating that unit #3 is more likely in its state 2 than state 3 at this moment. The updated state 
probabilities of the system in the residual lifetime right after 1 0.8t =  month can be derived via Eq.(7). The 
updated state probabilities of the system in the residual lifetime are readily assessed and delineated in 
Figure 1 by the dash lines with marks. If state 1 of the system is viewed as the failure state, i.e. 1SFn = , the 
reliability of the system equals to the summation of probabilities of the states greater than state 1. The 
updated reliability curve of the specific system after incorporating the inspection information at 1t  is plotted 
in Figure 2 by the dash line.  
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Figure 1: The original and updated state probabilities  
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Figure 2: The original and updated reliability

As observed in Figure 2, the updated reliability of the system is greater than the reliability assessed 
without utilizing the system-level observation over the time span [0.8,2.2] months; whereas the updated 
reliability  possesses a  relatively faster declining trend after 2.2 months. By utilizing the ensuing system-
level inspection data, the reliability of the specific system can be further updated in the same manner. 
Suppose the system is observed in its state 2 at 2 1.8t =  month, the updated reliability of the specific 
system is plotted in Figure 2 by the solid line. 

5. Conclusion 
In order to utilize system-level observation history of a specific system to improve the accuracy of reliability 
assessment, a dynamic reliability assessment method for MSSs is developed in this paper. A 
Bayesian formula is put forth to recursively identify the possible states of components at inspection time, 
and further update the reliability function of the system. As demonstrated in our numerical example, by 
utilizing the system-level observations of a specific system, the reliability function of the system can be 
dynamically updated so as to provide a more accurate prediction of the remaining useful life of the specific 
system than that of traditional time-based reliability assessment methods.  
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