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To achieve the aims of reducing energy consumption and CO2 emissions, Fully Electric Vehicle (FEV) needs 
to reach significant market shares. However, the advent of FEVs in mass production presents new challenges 
to automotive manufacturers due to the immaturity of the new building blocks, which can reduce FEV's safety 
and reliability. In this context, research activity is currently devoted to the development of prognostics and 
health management systems (PHMSs) which aim at providing information on the failsafe state of the FEV 
subsystem and at the prediction of its Remaining Useful Life (RUL). The objective of the present paper is to 
develop a method to assess the reliability and availability of a FEV subsystem which is monitored by a 
prognostics and health management system. The method proposed for the assessment is based on Monte 
Carlo Simulation. 

1. Introduction 
The reduction of greenhouse emissions are one of the most important goals of the environmental protection 
policy. European commission sets limits in order to achieve a reduction of CO2 emission by 20% since 1990 
until 2020 (European Commission, 2012). Despite this objective, since the 85% of world energy production is 
based on fossil fuels and the consumption of this type of fuels is expected to increase as population grows, 
greenhouse emissions are difficult to reduce. In this context, Fully Electric Vehicles (FEV) introduce a way to 
reduce fossil fuel consumption by substituting Internal Combustion Engine with electrical powertrain and 
batteries (Sedano et al., 2013). However, since the immaturity of these technologies introduces problems in 
terms of the FEV reliability, availability and safety, research activity is currently devoted to the development 
and test of Prognostic Health Monitoring System for the FEVs most critical subsystems (Sedano et al., 2013). 
Among these research activities, the European Project “Electrical powertrain Health Monitoring for Increased 
Safety of FEVs” (HEMIS) is developing a prognostic system to monitor the condition of the FEV powertrain 
and, thus, increasing the vehicle safety and reducing the maintenance cost. The PHMS will receive signals 
from the FEVs components and sends information to the driver about the occurrence of failures and the 
remaining useful life of its components (Baraldi et al., 2012; Benkedjouh et al., 2013; Vichare and Pecht, 
2006). 
In this context, the objective of the present paper is to develop a method for the assessment of the 
performance of the FEV subsystems in presence of a PHMS. In practice, we want to answer to the question: 
“Which benefits in terms of reliability and availability of the FEV subsystems do we expect by using PHMSs?” 
The answer to this question requires the development of a model for the computation of the availability and 
reliability of the subsystems which takes into account the operation of the PHMS. In this work, the problem has 
been addressed by resorting to Monte Carlo simulation (Zio, 2013).  
The paper is organized as follows: Section 2 states the problem; Section 3 illustrates the method used for the 
reliability and availability assessment. Section 4 discuss the case study and the obtained results; finally, in 
Section 5 some conclusions and remarks are drawn. 
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2. Problem Statement  
We consider a generic subsystem of a FEV, and we assume that it can fail due to two different independent 
causes, namely failure modes A and B. Failure mode A leads to an abrupt failure, which cannot be predicted 
by observing physical signals related to the system operation. Once Failure A occurs, it instantaneously 
causes the failure of the system and its unavailability. We assume that the failure time associated to failure A 
is exponentially distributed, with failure rate A. Failure B (Figure 1), instead, consists in a gradual degradation 
of the system which is represented by a discrete process with a safe, degraded and failed state (Baraldi et al., 
2013a). 
The transition time from the safe to the degraded state is assumed to be exponentially distributed, with failure 
rate DEG, whereas the transition time from the degraded to the failure B state is represented by a Weibull 
distribution with parameters W and W: A Weibull distribution is used to take into account the fact that, once 
the system is degraded, the hazard rate characterizing failure mode B increases with time (Johnson et al., 
1994).  

 

Figure 1: diagram representing failure mode B 

Considering the presence of the two failure modes A and B, the system can be in the 5 states reported in 
Table 1, i.e. one safe state (State 0), one degradation state (State 2), and three failed states (States 1, 3, 4). 
Once the system is failed, it is unavailable and must be repaired. Repair times are represented by exponential 
distributions with different repair rates A and B for failures of type A and B, respectively. Figure 2 shows the 
diagram of the system states. 
In order to improve the FEV performances we consider the introduction of a PHMS which is able to detect the 
degradation of the FEV subsystem, i.e. its  transition from State 0 to State 2, but it is not able to identify 
failures of type A. If a degraded condition is detected, the maintenance starts instantaneously.  

Table 1: List of the system states of the considered system without in absence of a PHMS 

State  Failure Mode A Failure Mode B System State 
0 No No Safe 
1 Yes No Failed 
2 No Degraded Safe 
3 No Yes Failed 
4 Yes Degraded Failed 

 
The duration of the repair action is represented by an exponential distribution with repair rate µDEG and we 
assume that the component is restored into an as good as new condition (State 0) after the maintenance. We 
consider the possibility that the PHMS has a failure which causes its unavailability and, thus, causes the 
impossibility of detecting the degradation of the system. The failure time is represented by an exponential 
distribution with failure rate PHMS. The failure of the PHMS is not repaired except that in case of repair after a 
failure of type B. Furthermore, if the PHMS is available and the system is degraded, the time necessary for the 
detection is represented by an exponential distribution with parameters Det. Table 2 reports all the possible 
combinations of the component failure and degradation states and the associated states of the system. Figure 
3 shows all the possible transitions between the states. The objective of this work is the computation of the 
system availability and reliability. 
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Figure 2: Diagram of the system states and transitions in absence of a PHMS 

Table 2: List of the system states in presence of a PHMS 

State  Failure Mode A Failure Mode B PHMS Failure System State 
0 No No No Safe 
1 Yes No No Failed 
2 No Degraded No Safe 
3 No No Yes Safe 
4 No Degraded Yes Safe 
5 No Yes Yes Failed 
6 No Degraded Detect Safe 
7 No Yes No Failed 
8 Yes No Yes Failed 
9 Yes Degraded Yes Failed 

10 Yes No No Failed 
 

 

Figure 3: diagram of the system states and transitions in presence of a PHMS 
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3. Methods 
Given the complexity of the system in terms of number of states and type of transitions, we resort to Monte 
Carlo simulation to compute the overall system availability and reliability (Zio et al., 2006; Baraldi et al., 
2013b). In particular, we have employed a direct Monte Carlo method. For any trial of the Monte Carlo 
simulation, the system history starts from state 0 and all transition times are sampled from the corresponding 
probability distributions and arranged in ascending order. The first transition of the system corresponds to that 
with associated the minimum transition time. The same procedure is repeated for any transition until the 
mission time is reached. Each Monte Carlo trial is associated to two counters: a reliability and an availability 
counter. In each reliability counter we have a Boolean indicator which indicates if the system has never failed 
before the mission time. In each unavailability counters we accumulate the time in which the component has 
been unavailable, i.e. in a “failed” state.  
After the Monte Carlo simulation of the system histories, reliability and availability have been estimate: 

 The sum of the reliability counters is divided by the number of histories in order to give an estimation 
of the reliability of the system over the mission time. 

 The sum of the unavailability counters is divided by the mission time and by the number of histories 
in order to give an estimation of the average unavailability of the system over the mission time. 

Notice that this procedure corresponds to performing an ensemble average of the realizations of the 
stochastic process which represents the system life (Zio, 2013). 

4. Case Study 
Table 3 reports the parameters of the stochastic distributions used in the case study for the representation of 
the uncertainty in the transition times. Notice that the values are only indicatives and do not correspond to any 
real system. 
The direct Monte Carlo method has been applied performing 106 simulations. Table 4 reports the obtained 
results, i.e. the system availability and reliability with the associate estimate uncertainty for a mission time of 
2000 hours. Notice that, given the high number of performed simulation, the uncertainty of the estimations is 
very low. The use of the PHMS allows to obtain a significant gain with respect to the case without PHMS: the 
system reliability increases of about 10%. With respect to the system mean availability, it can be observed that 
it  reaches high values also in the case without PHMS. This is due to the fact that in case of failure, the system 
is quickly repaired (fast mean repair times). 

Table 3: Parameters of the probability distributions describing the different transition times 

Transition time  Distribution Parameters 
Type A failure   Exponential A= 1.2 ·10 4 1 
Type B failure  Weibull w =14; w =2.3 
PHMS failure  Exponential =2.5 ·10 6 1 
Degradation  Exponential =9.4 ·10 5 1 

PHMS detection   Exponential Det =0.2258 h-1 
Repair after failure A  Exponential =0.0833 1 
Repair after failure B  Exponential =0.00833 1 

Repair after the detection of the PHMS  Exponential =0.0417 1

Table 4: Obtained system reliability and availability 

Results  With PHMS Without PHMS 
Reliability    
Availability    

 
Finally, it is interesting to investigate the influence of the PHMS performance on the system availability and 
reliability. To this purpose, we have performed several Monte Carlo simulation of the system behavior 
considering different values of the detection rate det. Figures 4 and 5 show the dependence of the system 
availability and reliability from det. Notice that, as expected, the system reliability and availability tend to 
increase if the performance of the PHMS increases ( det increases).  
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Figure 4: Sensitivity Analysis on Reliability 

 

 Figure 5: Sensitivity Analysis on Availability 

Furthermore, due to the presence of failure A, which is not detected by the PHMS, system availability and 
reliability do not reach the value of 1, even if the PHMS is assumed to instantaneously detect the 
degradation. 
Finally, it is interesting to observe that it seems not useful to increase the detection rate beyond 0.4 h-1 (i.e. 
to have a mean time to detection lower than 2.5 h) since this will not have any remarkable effect on the 
system reliability and availability. 

5. Conclusion 

In this work we have developed a method based on a direct Monte Carlo simulations for the assessment of 
the availability and reliability of a system which is monitored by a PHMS. The results obtained in the case 
study have shown that the use of a PHMS allow to remarkably increase the system reliability and slightly 
increase the system availability. Furthermore, it has also been shown that the performance of the PHMS, 
i.e. the time necessary to identify the system degradation, influences the system reliability and availability. 
As expected, reducing the mean time to detect the degradation has the effect of increasing the system 
performance, but it is not useful to reduce the mean detection time below a given value, since reliability 
and availability tend to reach an asymptotic value such that further reduction will not have effect on the 
overall system performance. In this work we have considered a condition based approach: the PHMS 
identifies the degradation of the system and this information is used to decide when to maintain the 
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system. Future work will be developed to address the case in which the PHMS provides also an estimate 
of the system RUL ,which is then used, within a predictive maintenance approach, to properly plan the 
repair time.
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