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This paper presents a similarity-based approach for the prediction of the Remaining Useful Life (RUL) of 
sea water filters placed upstream the heat exchangers of a nuclear reactor condenser. The prognostic 
approach is developed considering a library of reference degradation trajectories containing parameter 
observations taken from a set of similar equipments until their failures. The prediction of the RUL of the a 
filter is obtained by comparing its degradation trajectory to the reference trajectories and by properly 
aggregating the RULs of the training trajectories using a weighted sum which takes into account the 
similarity within test and training trajectories. In order to provide a measure of confidence in the RUL 
prediction in the form of a prediction interval, we place our work within the framework of belief function 
theory and we assign to each reference trajectory a belief proportional to its similarity to the test trajectory. 
A prediction interval is then obtained by properly combining these belief assignments using the Dempster’s 
rule. 

1. Introduction 

We consider the problem of predicting the Remaining Useful Life (RUL) of filters subjected to clogging, 
having available few sequences of clogging-related observation collected on similar filters. The real 
industrial data used in this study are taken from the filters used in the Boiling Water Reactor (BWR) of a 
Swedish nuclear power plant to clean the sea water pumped through the condenser. 
Several data-driven methods have been proposed for predicting the RUL of degrading equipment 
(Vachtsevanos, 2006; Sikorska et al., 2011), i.e., the time left before the equipment will stop fulfilling its 
functions. Data-driven methods rely on the availability of observations collected during the degradation of 
one or more similar equipments. Due to the scarcity of information typically available and the different 
sources of uncertainty to which the RUL estimate is subject, data-driven models can commit large errors in 
the RUL estimate and uncertainty management becomes a fundamental task in prognostics (Baraldi et al., 
2013): its goal is to provide the maintenance planner with an assessment of the expected mismatch 
between the real and predicted equipment failure times which allows to confidently plan maintenance 
actions according to the maximum acceptable failure probability. 
In this context, the objective of the present work is to properly represent the uncertainty on the filter RUL 
prediction provided by a data-driven prognostic model. In practice, the maintenance planner defines the 
maximum acceptable failure probability, and is informed by the prognostic method of the time at which this 
probability is exceeded. To this purpose, we consider the similarity-based prognostic model proposed in 
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(Zio & Di Maio, 2010) which uses a set of reference degradation trajectories collected in a reference library 
and performs a data-driven similarity analysis for predicting the RUL of a newly developing degradation 
trajectory (hereafter called test trajectory). The matching process is based on the evaluation of the 
distance between the reference and test trajectories. This prognostic model is here extended in order to 
provide a measure of confidence in the RUL prediction based on the belief function theory (BFT) (also 
called Dempster-Shafer or evidence theory) (Smets, 1994). The BFT allows combining different pieces of 
(uncertain) evidence, based on the assignment of basic belief masses to subsets of the space of all 
possible events, which are, in this case, the possible values that the filter RUL can assume. In practice, the
proposed method considers each reference trajectory as a piece of evidence regarding the value of the 
RUL of the test trajectory. These pieces of evidence are discounted based on their similarity to the test 
trajectory and pooled using the Dempster’s rule of combination [Petit-Renaud & Denoeux, 2004]. The 
result is a basic belief assignment (BBA) that quantifies one’s belief about the value of the RUL for the test 

trajectory given the reference trajectories. From the BBA, the total belief (i.e., the amount of evidence) 
supporting the hypothesis that the RUL will fall in any specific interval can be computed. The interval to 
which a sufficiently large total belief is assigned is retained as prediction interval for the RUL value. 
In the remainder of this paper we present the problem of RUL prediction in clogging filters (Section 2), 
describe the methodology for the similarity-based RUL prediction and the belief function theory–based 
uncertainty treatment (Section 3), present the results of the numerical application (Section 4) and draw the 
appropriate conclusions (Section 5).  

2. Clogging of BWR condenser filters 

We consider the problem of optimizing the maintenance of heat exchanger filters used to clean the sea 
water entering the condenser of the BWR reactor of a Swedish nuclear power plant. During operations, 
filters undergo clogging and, once clogged, can cumulate particles, seaweed, and mussels from the 
cooling water in the heat exchanger. For this reason, prompt and effective cleaning of the filter is desirable; 
predictive maintenance can help achieving this result, keeping maintenance costs reasonably low.
The clogging process is affected by large uncertainties, due to the variable conditions of the sea water; in 
this context, the challenge is to provide reliable confidence intervals for the RUL prediction.  
From data collected on field, we have available sequences of  observations , , taken during 
the clogging process of  historical filters up to the last measurement time  before the failure 
time, . Each observation  contains the measurements of the pressure drop , the 
flow across the filter , and the sea water temperature  collected at time  during the clogging process 
of the -th filter.
We are interested in predicting the RUL of a filter  at the present time , have available the observation 
sequences , , for the remaining reference trajectories, and the sequence of observations 

, from to the present time  and for the test trajectory . 

3. Methodology 

The idea underpinning the RUL estimation method is to evaluate the similarity between the test trajectory 
and the reference trajectories, and to use the RULs of these latter to estimate the RUL of the test 
equipment, taking into account the similarities between the trajectories (Petit-Renaud & Denoeux, 2004; 
Zio & Di Maio, 2010). 
The approach requires defining a measure of similarity between trajectories. This is done by considering 
the pointwise difference between -long sequences of observations. At the present time , the distance 

 between the sequence of the latest observations of the test trajectory, and all -long 
segments , , of all reference trajectories  is computed as: 
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Where  is the square Euclidean distance between vectors  and . 
The similarity  of the training trajectory segment  to the test trajectory is defined as a function of 
the distance measure . In Zio & Di Maio (2010) the following bell-shaped function has turned out to give 
robust results in similarity-based regression due to its gradual smoothness: 
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The arbitrary parameter  can be set by the analyst to shape the desired interpretation of similarity: the 
smaller is the value of , the stronger the definition of similarity. A strong definition of similarity implies that 
the two segments under comparison have to be very close in order to receive a similarity value 
significantly larger than zero. 
For the prediction of the test equipment RUL, a RUL value  is assigned to each training trajectory 

 by considering the difference between the trajectory failure time  and the last time instant  of 
the trajectory segment  which has the maximum similarity with the test trajectory:  
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Then, the prediction  of the test equipment RUL at time  is given by the similarity weighted sum of 
the values . 
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The ideas behind the weighting of the predictions  supplied by the individual trajectories is that: i) all 
failure trajectories in the reference library can, in principle, bring useful information for determining the RUL 
of the trajectory currently developing; ii) those segments of the reference trajectories which are most 
similar to the latest part of the test trajectory should be more informative about the value of its RUL. 

3.1 Credible RUL intervals based on belief function theory 

Given the uncertainty to which the RUL estimate is subject, maintenance plans cannot usually be based 
only on the RUL prediction in eq. (4). In this Section, we assume that the maintenance planner is able to 
specify a maximum acceptable failure probability, , and we propose a method to identify the latest time at 
which, according to the available information, we can guarantee that the probability to have a failure is 
lower than . To this aim, we resort to the Belief Function Theory. For the ease of clarity, only the notions 
of BFT necessary for the understanding of the proposed method will be now presented. For further details 
about the mathematical developments and the possible interpretations of the theory, the interested reader 
is referred to the woks of Dempster (1976), Shafer (1976) and Smets (1994). 
The belief of an agent about the value of an uncertain variable, in this case , is represented by a basic 
belief assignment (BBA), which assigns to subsets , of the domain of  (called frame of discernment 
in the BFT jargon) a mass  based on the available information. The frame of discernment  is 
defined as the interval , where  is the maximum possible life duration of the equipment. 
All the subsets of  with associated a mass  are referred to as focal sets. The BBA should 
verify the condition that the sum of the masses of all its focal sets is 1. 
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In our application of the BFT, we assume that each reference trajectory , , corresponds to a 
different agent and that each agent provides a BBA assignment defined by only one focal set , 
made of the single element , with associated mass . 
The similarity measure  defined in eq. (9) is interpreted as a measure about the relevance of the source 
of information inducing the BBA  and the discounting operation is used to reduce the belief assigned 
by the -th agent to  by a factor , with  representing the dissimilarity between the 
test and the -th training trajectory. The discounted BBAs , , are thus obtained (Petit-Renaud 
& Denoeux, 2004): 
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According to the Dempster’s rule of combination, two distinct sources of information inducing two BBAs, 

e.g., and , can be combined to give the aggregated BBA  (Petit-Renaud & Denoeux, 
2004): 
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where the mass  is imposed to convert a possibly subnormal BBA (i.e., a BBA assigning a 
finite mass to the empty set ) into a normal one and where  is a normalization factor introduced to make 
the masses  assigned to all focal elements sum up to 1. Then, by aggregating through eq. (5)
the  discounted BBAs in eq. (4) one obtains the aggregated BBA . 
The information conveyed by a BBA can be represented by a belief  or by a plausibility function 

 defined, respectively, as 
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The belief associated to an interval represents the amount of belief that directly supports the 
hypothesis , whereas the plausibility represent the maximum belief that could be 
committed to this hypothesis if further information became available. Then, belief and plausibility can be 
seen as lower and upper bounds on the probability that hypothesis is true. Let us 
consider a left bounded interval ; the belief assigned to such interval is a lower bound for the 
probability that the RUL of the test equipment is larger than . Thus, if the maintenance planner 
defines the maximum acceptable failure probability , the method can provide a value which 
guarantees that the test equipment will fail before with a probability lower than . The interval 

will be referred to as left bounded prediction interval with belief .
To set parameters  and  one should take into account the precision of the prediction, which can be 
evaluated as the mean amplitude  of the interval , its coverage ,
defined as the percentage of times the condition  is verified, and its accuracy, 
measured by the Mean Square prediction Error ( ). In practice one is interested in two conflicting 
desiderata: small prediction intervals ( ) and high coverage values ( ). Notice that a coverage 
lower than  is not acceptable since it would indicate that a too large belief mass has been assigned 
to the predictions provided by the reference trajectories, and, thus, that the belief  assigned to the 
prediction interval is not justified by the experimental evidence. 
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The following procedure for setting the parameters and  is here adopted: 1) we identify a set of 
plausible values of ; 2) for each value of  in 1), we derive a condition for parameter  by imposing a 
coverage  greater than ; 3) since the precision tends to monotonically increase as 
increases, we choose, for each value of , the maximum  value which satisfies the condition in 2; 4) within 
the identified couples of values of and  in 3), we choose the couple with the most satisfactory prediction 
accuracy (low ) and precision (low ) trade-off. 

4. Results 

According to the procedure proposed in Section 3.1, we have set the method parameters  and  to the 
values of 0.05 and 1, respectively. The prognostic method has then been applied to each available 
trajectory at the three life fractions using the remaining  trajectories as reference trajectories.
Figure 1 shows the predicted RUL and RUL confidence bound with .
From the point of view of the maintenance planner, the on-line application of the method to trajectory 4 
would suggest to perform maintenance on the filters after few days of operation, since the 80% confidence 
bound reaches the value of zero at time  working days. This is due to the fact that the similarity of 
this trajectory with all reference trajectories is rather low, and thus the prediction is very uncertain. Notice 
that this filter is actually characterized by a very short life since it is going to fail at time  working 
days, and, thus, the anticipation of the maintenance action can be acceptable. 
On the other side, the application of the method to trajectory 6 would inform the maintenance planner at 
time 15 working days that the filter life is still long since the 80% RUL confidence bound is 21 working days 
when actually the filter is going to fail in 10 working days. This incorrect outcome of the method can be 
ascribed to the fact that trajectory 8 receives a very high belief assignment  due to 
its high similarity with trajectory 6 around time  although after few working days the parameter 
evolutions become very different. 

Figure 1: predictions obtained for the  filter clogging trajectories available using parameters 
and . 
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5. Conclusions 

In this work, we have considered the problem of predicting the RUL of clogging filters and providing a 
measure of confidence in the prediction. The information available to perform the prediction is a set of 
reference degradation trajectories followed by similar filters which have failed in the past. We resorted to a 
method based on the use of a similarity-based approach for the prediction of equipment RUL and of the 
belief function theory for the assessment of the RUL uncertainty. Considering the large uncertainties 
affecting the clogging process and the limited number of available reference degradation trajectories, the 
obtained results seem to be satisfactory in terms of accuracy, precision and coverage. 
Key elements to be considered for the application of the method are the setting of the parameter  used by 
the similarity algorithm to define how strong is the interpretation of similarity, and the parameter  of the 
BFT discounting operation which defines the degree of trust to be given to the reference trajectories.  
A limit of the method is the presence of possibly large oscillations in the provided confidence bound which 
can be confusing for the maintenance planner. We have shown that such oscillations can be reduced by 
conveniently setting the parameter values which, however, tends to reduce the precision of the prediction. 
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