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A short-term forecasting approach is proposed for the purposes of condition monitoring. The proposed
approach builds on the Probabilistic Support Vector Regression (PSVR) method. The tuning of the PSVR
hyerparameters, the model identification and the uncertainty analysis are conducted via novel and
innovative strategies. A case study is shown, regarding the prediction of a drifting process parameter of a
Nuclear Power Plant (NPP) component.

1. Introduction

In complex engineering systems, methods are sought to anticipate, diagnose and control abnormal events
in a timely manner, to prevent high economic losses in case of unexpected faults (Venkatasubramanian,
2005). Condition monitoring of components and systems is usually performed at regular intervals, in order
to effectively identify faults possibly affecting the system state. The prediction of the failure development is
also of interest for the purposes of maintenance, and for informing decisions on the actions to take to
recover the system (Zio, 2012).

Both model-based and data-driven approaches can be adopted for forecasting the evolution of a failure
(Zio, 2012). Considering the difficulty of building effective physical models, and given that most
components and systems are monitored throughout their life cycle, data-driven approaches are often the
most suited in the context of realistic applications.

Several research works have concerned data-driven approaches for condition monitoring of engineering
systems. Artificial Neural Network (ANN) (Zio and Gola, 2012), Support Vector Machine (SVM) (Liu et al.,
2013), Genetic Algorithm (GA) (Baradi et al., 2011) and Auto-Associative Kernel Regression (AAKR)
(Yang et al., 2006) are among the most studied and applied.

In particular, SVMs are learning machines implementing the Structural Risk Minimization (SRM) inductive
principle to obtain good generalization performance on a limited number of learning patterns (Vapnik et al.,
1996). It has been shown that SVMs can solve nonlinear problems after mapping the input data into a high
dimensional Reproducing Kernel Hilbert Space (RKHS) (Vapnik et al., 1996). Despite the accuracy and
effectiveness of SVMs, difficulties can arise in the tuning of the parameters for the specific problem at
hand. Moreover, SVMs provide classification and regression results only as point estimates, while a
quantification of the uncertainty associated to the prediction is crucial in most applications.

To overcome these limitations, the Bayesian probabilistic paradigm has been introduced within the SVM
framework, providing approaches that can estimate the parameter and feature spaces simultaneously and
also obtain a predictive distribution. These methods are called Probabilistic Support Vector Regression
(PSVR). A modified Gaussian-based PSVR approach is proposed in this paper for short-term prediction
with uncertainty quantification. This approach is developed and used to provide the predicted value of a
parameter of interest, describing the component condition, along with the associated Prediction Intervals
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(Pls). A real case study is shown, regarding the prediction of a drifting process parameter of a Nuclear
Power Plant (NPP) component.

The paper is structured as follows. Section 2 resumes the PSVR method for prognostics. Section 3
presents the case study with the necessary pre-processing steps, used to prepare the data and identify the
prediction model. In Section 4, the results of the application of PSVR for short-term forecasting of a drifting
parameter in a NPP component are presented. Some conclusions are drawn in Section 5.

2. Probabilistic Support Vector Regression (PSVR)

Different Gaussian-based versions of the PSVR method can be defined, depending on the choice of the
loss function. A large number of loss functions have been proposed in the literature, e.g. Quadratic Loss
Function, Laplacian Loss Function, Huber’'s Loss Function (Chu et al., 2002). In the proposed modified
PSVR approach, the authors have chosen the [J-Insensitive Loss Function, which enables a sparse set of
support vectors to be obtained (Smola and Schélkopf, 2004).

2.1 PSVR with [J-Insensitive Loss Function
Let us assume that the input data is a n-dimensional set of vectors X ={xy, X», ..., X,} independently

drawn in R? and that we also have an independent sample of target values Y = V15 Yor s ¥} Where
y; €ER, i=1, 2, .., n. In regression methods, the final aim is to find a function a(): R’ — R describing the
relation between the input data and the target.
We hereafter briefly recall the PSVR approach to the estimation of a(x); further mathematical details on the
derivation of the method can be found in Gao et al. (2001).
We make the following assumptions:

1. The training data I' = {X, Y} is composed by independent samples, which given a(x), are drawn from
the same probability distribution.

2. The a priori probability distribution of the unknown a(x) is Pla(X)] « exp (-%||PAa||2), where ||Pall? is a
positive semi-definite operator and a(X) = (a(x4), a(xy), ..., a(xn))T.
3. The [-insensitive loss function is chosen as loss function of the PSVR method (see Gao et al., 2001).
Loo = fi-e < 1
69) 0. Ix|2¢ (1)

4. The covariance function is K(X, X), where the element K of the i-th row and j-th column is
IZ

K(x;, x;) =exp (- Ix,z-;, ), with x;, x; are the input data points in X, and i,j=1, 2, ..., n.
The a posteriori probability of a(X) can be written as
G, e 1 1
PACIM] = oo expl-C Taex Le (¥, alx) ) - 5a(X) K xa(X)), @)

where G(C, ¢) = %% and Ky x is a shortened notation for the covariance matrix K(x;, X;).
The Maximum A Posteriori (MAP) solution of Eq. (2) is found by finding the minimum of the following
function
1 1
Raswi(@) = CExex Le (¥; - a(x)) + 3a(X) Ky xa(X) (3)

Following the discussion in Mackay (1997), we can write the solution of the minimization problem
associated to Eq. (3) in the following form

a (x) = Ny e x BK(X;.X) (4)

where B, = a,-—a,-* is a combination of the Lagrange Multipliers associated to the optimization problem
(Smola and Scholképf, 2004). The a; and a; can be determined by a Quadratic Programming approach.
According to Smola and Scholképf (2004), vi=1, ..., n, a; and a; lie in the interval [0, C], and B,
consequently lies in the interval [-C, C], which is the domain of the optimization problem.

2.2 Hyperparameters

The three hyperparameters C, ¢, y need to be determined.

Parameter C is the penalty factor. It controls the trade-off between complexity and the proportion of non-
separable samples, and must be selected by the user. If it is too large, it will induce a high penalty for non-
separable points, hence we may store too many support vectors and go towards over fitting. If it is too
small, it may result in underfitting (Alpaydin, 2004). For what concerns the optimization process, C
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influences the computational burden of the regression: the bigger C is, the heavier the computational
burden is.

Parameter [1 controls the sparsity of the data. It has an effect on the smoothness of the SVM response
and it affects the number of support vectors; so, both the complexity and the generalization power of the
network depend on its value. By inspecting the [J-insensitive loss function in Eq. (1), we see that data
points inside a tube of radius [1 surrounding the predicted values are not considered in training the
regression model.

Finally, parameter y influences the width of the kernel, and hence the accuracy of the prediction and its
variability.

Methods exist in the literature to determine these hyperparameters; among others, we recall VC-theory
(Vapnik, 1995), Bayesian approaches (Mackay, 1991), Akaike’s Information Criterion (Akaike, 1974),
Network Information Criterion (Murata et al., 1994) and Maximizing Evidence Function (Kim et al., 2012).
For our work, we adopt a novel interpolation method to obtain the best values of the three
hyperparameters (C, ¢, y). For further details, see Liu et al., 2013.

2.3 Error Bar Estimation

In the Bayesian treatment of the prediction problem, error bars arise naturally from the predictive
distribution. They are made up of two terms, one due to the a posteriori uncertainty (the uncertainty of
a(x)) and the other due to the intrinsic noise in the data (Kim et al., 2012). Suppose that x is a test input
vector, and that the corresponding value of the target is the random variable y, obtained adding to a(x) an
unknown noise 6 with zero mean; then,

P[Fla(X)] « exp(-C L1 L(5)))- (®)

We can also obtain the density of the noise &
c

POl = 55 eXP(-CL(0)), (6)
and the noise variance

_ 2 €(Ce+3)
o%_?+3(05+1) 7

The conditional probability distribution of a(x) given I', can instead be written as

_ 1 (@) - &' (x)°
Pla()|l] = \/Z——WteXP{'T}, (8)
with
07 (%) = KOXX) - KRy x Kt 0, K 9)

Consequently, the error bar width of the prediction corresponding to the test input point x is

£2(Ce+3) T 1
m + K(X,X) - KXM,XKXM,XMKXM,X‘ (1 O)

0*(x) = 0§ + 0F(0) = 5 +

The conditional probability distribution and the error bar are given in Eq. (8) and (10). See Gao et al.
(2001) for more details on the calculations.

3. Case Study

A set of data from the Reactor Coolant Pump (RCP) of one of EDF’s NPPs is used to test the efficiency
and the accuracy of the PSVR modelling approach developed in our work. In the following, we describe
the data and illustrate the pre-processing steps.

3.1 Data Description

The dataset concerns one scenario of increasing leak flow in the first seal of the RCP of a NPP (a variable
denoted with IntVar 9). The dataset contains the values of seventeen different variables recorded by
seventeen different sensors along a period of 406 days. The variables whose measurements concern
sensors inside the RCP are hereafter called internal variables; the others are called external variables. The
description of all the internal and external variables and their physical meanings are given in Table 1.

We note that: all the variables are time-dependent, and there are seventeen variables in total, hence
leading to a multivariate problem; each variable is measured hourly, giving 9200 measurements for each
variable, and hence making computations challenging; all the variables show a nonlinear behaviour, hence
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requiring a nonlinear model; the data need pre-processing, because there are many outliers and missing
observations.

Table1: Physical meaning of each internal and external variable

Internal variables External variables

Name Physical meaning Name Physical meaning

IntVar 1 T cold leg loop 1 [WR] ExtVar 1 T by-pass hot leg loop 3
IntVar 2 T water seal #1 051PO ExtVar 2 T seal injection line

IntVar 3 T stator winding motor 051PO ExtVar 3 P primary amount file B [GL]
IntVar 4 T motor lower bearing 051PO ExtVar 4 Debit general file A

IntVar 5 T lower thrust bearing 051PO ExtVar 5 Debit general file B

IntVar 6 T motor upper bearing 051PO ExtVar 6 T aval exchanges file A
IntVar 7 T motor upper thrust bearing 051PO  ExtVar7 T aval exchanges file B
IntVar 8 Flow seal injection supply RCP051PO ExtVar 8 Debit refrigeration GMPP 051PO
IntVar 9 Seal leak flow #1 RCP051PO

3.2 Data Pre-processing

Outliers can be easily selected by deciding some constraints, and then by identifying those data points
which lie outside the constraints. The data selected as outliers are then removed.

A possible way to deal with the reconstruction of missing data is the local polynomial regression fitting
(Masry and Mielniczuk, 1999). It estimates the values of the internal and external variables when there are
missing data points. For details on the reconstruction procedure, see Liu et al. (2013).

3.3 Model Identification

In order to select the most proper variables to be included as inputs in the PSVR model for improved
prediction accuracy and reduction of the computational burden, a correlation analysis is carried out
between the target variable IntVar 9 and the other internal and external variables. The inputs are chosen to
be the variables maximizing their correlations with the target IntVar 9. Correlations are measured by the
classical Pearson correlation coefficient (Rodgers and Nicewander, 1988). According to the correlations
analysis, three external variables are the most related to the target and six internal variables have also a
strong correlation with the target, with a correlation of more than 48 %. Hence, these six most related
internal variables and the three most related external variables are included as inputs in the prediction
model. IntVar 8 is also chosen as input, as suggested by expert judgment. Historical values of the target
can also be exploited as inputs to improve the accuracy of the prediction. The number of previous values
of the target to be used in the model is set equal to 3 after carrying out an autocorrelation analysis on the
time series of the target values. The results are given in the next Section.

4. Case Study Results

We consider the scenario of increasing leak flow in the first seal of the RCP. The prediction target is the
variable IntVar 9, and we focus on short-term (1-hour ahead) prediction. At time {, we want to predict the
target value at time t + 1; for this, we use as inputs the historical values of the target itself till three time
steps before t, the values of the three most correlated external variables at time t and the values of the six
most correlated internal variables at time t. We select a portion of the scenario to build a PSVR model for
prediction. A size of 200 data points (5600-5800 observations) are used for training the model; another set,
form 5601 to 8000 observations, is used for testing. The hyperparameters selection has been carried out
with the novel interpolation method of Liu et al. (2013): (C, ¢, y) = (6309.6, 0.0032, 7).

The results are shown in Figure 1, where the prediction of the target with corresponding Prediction Interval
(PI) of confidence level of 95 % is reported. The solid line is the target, the dot line is the point prediction,
while the two dashed lines are the upper and lower bounds of the 95 % Pl computed according to the
predictive distribution. Hence, for each test point x, the Pl is [a"(x) - 20(x), a (X) + 20(x)], where a () is
the predicted value according to Eq. (4) and o(x) is the variance associated to the prediction (error bar)
given by Eq. (10). We remark that the predictive distribution of x is a Gaussian with mean a’'(x) and
variance 02(x).

The prediction interval empirical coverage estimated on the whole testing set is 91.50 %. The MSE is
5.4332:10°. The relative error is smaller than 4 %. The results are satisfactory both from the
methodological and engineering points of view.

868



0.8 —

0.7 —

0.6 —

---------- Predicted Value
Target

----- Upper Bound —
----- Lower Bound

0.5

0.4

6000 6500 7000 7500 8000

Figure 1: PSVR point predictions and Pls (both training and testing data)

5. Conclusion

In this paper, a short-term forecasting approach is proposed for the purposes of condition monitoring. It
includes pre-processing for data reconstruction and model selection, and PSVR for estimation of the
prediction interval and conditional predictive distribution of the target of interest. The results of the
application to a real case study of leak flow in the first seal of a RCP are satisfactory. The coverage of the
prediction interval is 91.50 % with a confidence level of 95 %.

The future work will focus on the development of a method to compute the Remaining Useful Life (RUL) on
the basis of the prediction of the target parameter of interest. This entails propagating the uncertainties
due to both the observed data and the model itself. Other failure scenarios, concerning the behavior of the
same component in other plants, will also be included in the model. This may require the development of
an ensemble of models. Finally, a model-based approach to prediction will also be inspected, for
comparison.
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