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This paper presents the technique of Singular Spectrum Analysis (SSA) and its application for electric load 
forecasting purposes. SSA is a relatively new non-parametric data-driven technique developed to model 
non-linear and/or non-stationary, noisy time series. SSA is able to decompose the original time series into 
the sum of independent components, which represent the trend, oscillatory behavior (periodic or quasi-
periodic components) and noise. One of the main advantages of SSA compared to other non-parametric 
approaches is that only two parameters are required to model the time series under analysis. An example 
of application is given, with regards to forecasting the monthly electric load demand in a Venezuelan 
region served by wind power generators. In this case, careful demand estimation is required since the 
wind generation output could be highly variable and additional conventional generation or transmission 
links would be required to satisfy the load demand. A comparison with other classical time-series 
approaches (like exponential smoothing and Auto Regressive Integrated Moving Average models) is 
presented. The results show that SSA is a powerful approach to model time series, capable of identifying 
sub-time series (trends along with seasonal periodic components).  

1. Introduction 
Power system planning and operation are important tasks that all electric utilities face. One of the factors 
that influence their success is load forecasting. Indeed, this determines the amount of generation needed 
to satisfy the electric load demand. On the short time range, this is accomplished by scheduling enough 
generation and transmission capacity (in real time) and by planning new generation allocation for the mid 
and long ranges. In the case of intermittent renewable generation sources, e.g. wind, the operator is faced 
not only with the load variation but also with that of the generation output. 
In this paper, Singular Spectrum Analysis (SSA) (Elsner and Tsonis, 1996) is applied for forecasting 
electric power load demand. SSA is a technique developed independently in the USA and UK under the 
name SSA, and in Russia under the name Caterpilar-SSA (Beneki et al., 2009). It is based on statistics 
and probability theory, dynamical systems and signal processing concepts and it is considered as a non-
parametric or data-driven technique (Beneki et al., 2009) for modeling non-linear, non-stationary and noisy 
short time series (Hassani, 2007). SSA does not rely on a priori defined functions like, for example, the 
Fourier approach (based on sine and cosine functions), or statistical assumptions (e.g., stationarity, 
normality). One of the main advantages of SSA compared to other non-parametric approaches is that only 
two parameters are required to model the time series under analysis. 
The development of the technique and its application for electric load forecasting are illustrated by way of 
an example related to a Venezuelan region served by power generators. 
The remainder of the paper is organized as follows: Section 2 introduces the SSA approach; Section 3 
presents the results obtained using SSA and the comparison with other classical time series techniques; 
finally, Section 4 presents some conclusions.  
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2. Singular Spectrum Analysis (SSA)  
The main idea of SSA is to make a decomposition of the original time series into the sum of independent 
components, which represent the trend, oscillatory behavior (periodic or quasi-periodic components) and 
noise. Some of these components are selected and retained for the forecasting task. SSA has been used 
successfully in several areas like hydrology (Vautard et al., 1992), geophysics (Vautard and Ghil, 1989),  
economics (Carvalho et al., 2012), medical engineering (Sanei et al., 2011) among others.  
Let y=[y1, y2, …., yT] be a time series of length T. The SSA technique consists of two stages: 
decomposition and reconstruction (Golyandina et al., 2001).  

2.1 Decomposition 
This stage is subdivided into two steps: Embedding and Singular Value Decomposition 

2.1.1 Embedding 
The main result of this step is the definition of a trajectory matrix or a lagged version of the original time 
series y.  The matrix is associated with a windows length L (L≤T/2, to be defined by the user). Let K=T-
L+1; the trajectory matrix is defined as:  

X=[X1, …XK] =

++

+

T2L1LL

43

1K432

K321

...
...............
.........

...

...

yyyy

yy
yyyy
yyyy

 (1) 

The trajectory matrix is a Hankel matrix, that is all the elements along the diagonal i+j=const are equal 
(Hassani, 2007). 

2.1.2 Singular Value Decomposition (SVD) 
From X, define the covariance matrix XXt. The SVD of XXt produces a set of L eigenvalues λ1≥λ2≥…≥λL≥ 0 
and the corresponding eigenvectors U1, U2, …., UL (often denoted by Empirical Orthogonal Functions 

(EOF)). Then the SVD of the trajectory matrix can be written as X= E1+E2+…+Ed, where Ei= i UiVi
t , d is 

the rank of XXt (that is the number of non-zero eigenvalues) and V1, V2, …, Vd are the Principal 

Components (PC), defined as Vi=XtUi/ i . The collection ( i , Ui, Vi) is referred to as the i-th

eigentriple of the matrix X. If 
=

=Γ
d

1i
i , then λi/Γ is the proportion of the variance of X explained by Ei: E1

has the highest contribution while Ed has the lowest contribution (Hassani et al., 2009). SVD could be time 
consuming if the length of the time series is large (say T > 1000). 

2.2 Reconstruction 
The reconstruction stage consists of two steps: Grouping and Averaging. 

2.2.1 Grouping 
In this step, r out of d eigentriples are selected by the user. Let I={i1,i2,..ir} be a group of r selected 
eigentriples and XI= Xi1+Xi2+ … + Xir. XI is related to the “signal” of y while the rest of the (d-r) eigentriples 
describe the error term ε.

2.2.2 Averaging 
The group of r components selected in the previous stage is then used to reconstruct the deterministic 
components of the time series. The basic idea is to transform each of the terms Xi1, Xi2, …,Xir into 
reconstructed time series yi1, yi2, …, yir through the Hankelization process H() or diagonal averaging 
(Golyandina et al., 2001): if zij is an element of a generic matrix Z, then the k-th term of the reconstructed 
time series can be obtained by averaging zij, if i+j=k+1. That means that H(Z) is a time series of length T 
reconstructed from matrix Z. At the end of the averaging step, the reconstructed time series is an 
approximation of y: 

y= H(Xi1)+ H (Xi2) + … + H (Xir) + ε (2)
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As pointed by Alexdradov and Golyandina (2005), the reconstruction of a single eigentriple is based on the 
whole time series. This means that SSA is not a local method and hence robust to outliers. 

2.3 Forecasting 
The SSA forecasting approach uses the notion of Linear Recurrent Formulae (LRF) defined as:   

yT-i=  a
1L

1
k kiT

k
y −−

−

=
, 0  ≤  i ≤ T-L and ak≠0. Broad classes of continuous series are governed by LRF, 

including harmonics, polynomial and exponential series. The coefficients ak are determined from the 
eigenvectors obtained from the SVD stage (see Golyandina et al., 2001 for details). 

2.4  Parameter selection 
As previously mentioned only two parameters are required in SSA: the window length L and the number of 
components r. A detailed description of parameter selection is presented in Golyandina et al. (2001). 
Values for L and r could be defined using information provided by the time series under study or through 
additional indices: 
• The window length L: The general rule is to select L = T/2. However if the user knows that the time 

series may include an integer-period component s, then a better separability of components could be 
obtained by defining L proportional to that period (L=(T-js)/2, j=1, 2, ..)  

• The number of components r: The theory of separability, that is how well the components can be 
separated, is the basis for the definition of r. A general criterion is based on the contribution of each 

component to the variance of X, evaluated as λi/Γ (
=

=Γ
d

1i
i ): Select r out of d components so that 

the sum of their contributions is at least a predefined threshold, for example ≥ 90 %. In general, noise 
components have low contribution.  

• An index, defined as the weighted correlation w-correlation (Hassani, 2007), could also be used to 
quantify the degree of separability among two reconstructed components. Let XA and XB be two 
reconstructed time series: if w-correlation(XA, XB) is zero then the two series are separable. On the 
other side, if w-correlation(XA, XB) is high, then the components could be grouped. 

Finally, pairwise scatterplots of eigenvectors are used to detect harmonic components, whose frequencies 
can be estimated using a periodogram. In general, components with high frequency are associated to 
noise components. Currently, there are quasi-automatic algorithms to help the user in the determination of 
r (e.g., AutoSSA (Alexandrov and Golyandina, 2005) or Rssa (Korobeynikov, 2012)). 

3. Case study 
SSA is used to decompose and forecast the monthly electric load demand in a Venezuelan region served 
by wind power generators. The time series (in MW) is composed by 240 data. As a usual procedure, the 
corresponding time series is divided into two sets: the first set (training data set), defined by the first T=228 
observations, is used to “tune” the model, while the second set (testing data set) is used to assess the 
performance of the model. Since data points are recorded monthly, at least a 12-period component is 
assumed (s=12). Results from SSA are compared with other classical time-series approaches (like 
exponential smoothing and Auto Regressive Integrated Moving Average models, as Briceño (2012)). SSA 
evaluations are performed using the Rssa procedure in R (Korobeynikov, 2012). For each technique, the 
following performance indexes related to the residuals are presented: Mean Squared Error (MSE), Mean 
Absolute Percentage Error (MAPE), Box-Pierce statistic Q.

3.1 SSA evaluation 

3.1.1: Decomposition stage: Embedding and SVD Decomposition 
Figure 1 shows the contribution of each eigenvalue after the SVD stage, using L= (T-12)/2= 108 as the 
window length required for the embedding step. Note that the first eight eigenvectors account for almost 95 
% of the variance of the time series.  

3.1.2: Reconstruction stage: Grouping and Averaging 
Figure 2 shows the plot of the reconstructed components (RC). At a first glance, RC1 and RC2 are linked 
to slow moving components (i.e., the trend) while the rest of RC are associated to oscillating components. 
Figure 3 shows the plot associated to pairs of eigenvectors. The geometric figures associated to 
eigenvectors 5 and 6 and 7 and 8 show the existence of frequencies related to six and twelve months. The 
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rest of the plots do not suggest any known geometric figure. The raw periodogram of the time series under 
study shows two significant components at 1/12 and 2/12=1/6, indicating the existence of monthly and six-
month components, as previously detected. This fact could suggest the use of a new integer L value, 
proportional to both components detected (e.g., L=96, 84, ….).  
In order to evaluate the separability of the different eigentriples, Figure 6 shows a graphical representation 
of the w-correlation matrix. Each cell (Fi,Fj) represents the correlation between components i and j, coded 
from black (w-correlation = 1) to white (w-correlation = 0). Note that component 1 is clearly separable and 
components 2-4 and 9-10 are almost separable (w-correlation values < 0.50). Components RC5-RC6 and 
RC7-RC8 have w-correlations equals to 1 and, as previously mentioned, could be grouped. Finally, the 
reconstruction will be based on eigentriples 1 to 10, as shown in Figure 4, along with the forecast for the 
next 12 months.  

3.1.3: Comparison with other approaches  
Table 1 shows the comparison of residual indexes between the SSA and two classical approaches, during 
the training phase. The additive Holt-Winter was the best method selected among exponential smoothing 
techniques while the best SARIMA model found was a (2,1,0)(2,0,2)12:

(1 + 0,28*B+ 0,17*B2)(1 - 0,48*B12 - 0,5*B24) Xt =(1 – 0,26*B12 + 0,38*B24)at          (3) 

The SARIMA and SSA residuals are considered as random. Note that SSA performance is better than the 
other approaches. SSA is able to produce additional information about the decomposition of the time 
series, especially trend and harmonic components. Table 1 also shows the MSE and MAPE indexes 
during the testing phase. Again, SSA produce the best results. 

4. Conclusions 
This paper presented the use of Singular Spectrum Analysis as a technique able to decompose and 
forecast a non-stationary and/or non-linear time series into a set of independent components. In the 
example presented, related to the electric load demand of a Venezuelan region, the performance of SSA 
was the best, compared with other classical time series approaches. SSA relies only on the definition of 
two parameters: the windows length L and the number of components r. As a general rule, L could be fixed 
as L=(T-s)/2 while r could be determined automatically from the values of the W-correlation matrix. Briceño 
(2012) shows that the best SSA model is obtained using L=84, with performance indexes slightly better 
that the SSA model presented using L=118. 

Figure 1 Eigenvector decomposition 
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Figure 2: Reconstructed components related to the first 25 eigentriples 

Figure 3: Pair of eigenvectors plot  

Figure 4: A graphical representation of the W-correlation matrix 
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Figure 5: Reconstruction using eigentriples 1 to 10 

Table 1:  Residual indexes comparison  

Training Phase Testing Phase 
Method MSE MAPE (%) Theil Box-PierceRandomnessMSE MAPE (%) 
AdDitive Holt-Winter 5.5 1.25 0.80 100.4 No 24.9 2.68
ARIMA (2,1,0)(2,0,2)12 6.0 1.15 0.45 24.3 Yes 12.6 1.86
SSA 3.6 1.06 0.26 23.1 Yes 7.0 1.26
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