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Wind turbines are fundamental components of power conversion. With the increasing number of wind 
turbines worldwide, the exposure to harsh environmental conditions and the use of remote areas like 
offshore, arctic or desert regions, it has become important to predict abnormal machine behaviour as early 
as possible. Therefore, automated fault detection is necessary. Fault detection will prevent extensive 
damage in case of a fault and create time to react to faults, for example, to prepare inspections and/or to 
purchase spare parts. To reduce the downtime of wind turbines, fault detection systems are already widely 
used but more research and development need to be done. The diagnostic approach of those systems is 
to use pre-set fixed alert thresholds but has several drawbacks and therefore makes fault isolation difficult. 
To overcome the drawbacks of the common systems, this paper introduces model based condition 
monitoring using residual generation to wind turbine drive trains. Residuals describe the difference 
between the measurements and the model output. The model output represents the non-faulty system 
behaviour. If the measurement deviates from the model output a fault is indicated. Residual generation is a 
known approach for other systems. A mathematical model of a system, such as a wind turbine drive train, 
depends on the actual and past machine operation as well as on the ambient conditions. By knowing these 
conditions and being able to describe them in an analytic way, a model can be derived using the well-
known state-space representation.  

1. Introduction 
The task of fault detection is to detect faults as early as possible. Gertler (1988) divides fault detection in 
two major groups: model based methods and non-model based methods. Some examples of non-model 
based fault detection are (adapted from Gertler, 1988): pre-set alert thresholds, multiple sensors and 
frequency analysis. Especially the method of pre-set alert thresholds is widely used in fault detection 
because of its simplicity, but this method also has several drawbacks (adapted from Gertler, 1991): 
thresholds need to be set conservatively because of a possibly wide range of signal variation. Another 
drawback is that fault detection in transient stages because the non-faulty signal and the fault need to add 
up until the pre-set alert threshold is exceeded. To overcome these drawbacks, the model based approach 
was introduced with the following benefits: early detection of faults, monitoring signals also in transient 
operating states and fault detection in closed loop systems (Isermann, 1995). 
This paper applies the model based fault detection on a wind turbine generator to detect temperature 
faults as early as possible. It is pointed out in Faulstich (2012) that the major faults of the generator cause 
a mean annual downtime of 5.7 days. Together with the electrical system (0.80 days of mean annual 
downtime), the electrical control (0.63) and the gearbox (0.59), the generator (0.58) is one of the top 
reasons of turbine downtime. The presented method has to be understood as an additional tool to protect 
the machine against high temperature since high temperature reduces the remaining useful lifetime and 
causes faults. 
The paper is organized as follows: introduction of the model, simulation and discussion of faults.  
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2. System Model 
The discrete time invariant state-space representation is used to model the system behaviour, see 
equation (1) and (2).  

       (1) 

. (2)

Where A, B, C and D are constant matrices. The output is represented by y(k), the inputs by u(k), the 
state variables by x(k) and the estimated variables are marked with a circumflex. To compensate 
modelling uncertainties, an observer is added. The observer is an output observer and can be described 
as follows: 

(3)

. (4)

The observer gain L needs to be selected such that the system is stable, but model uncertainties are 
compensated. The observer and the modelled process are displayed in Figure 1. 

Figure 1: Block diagram of a generalized model 
and observer in state-space representation

Figure 2: Block diagram of the thermal model and the 
thermal observer in state-space representation including 

faults 

3. Fault Diagnosis  
To diagnose a faulty behaviour of the model based system, different methods are used to analyse the 
residual signal r(k) instead of the output signal y(k). The residual r(k) represents the difference between 
the measured signal y(k) and the observer output . Thereby, the observer output represents the ideal 
non-faulty system behaviour. In fact, the methods used to analyse r(k) are the same than the ones for y(k)
but provide a more accurate fault diagnosis. (Ding, 2008) In this paper, we focus on the peak value Jpeak

and the trend value Jtrend. Besides those two values methods, more can be found e.g. in Ding (2008). 

3.1 Peak Value     
Adapted from Ding (2008) the peak value Jpeak is defined as follows: 

(5)

3.2 Trend Value 
In Ding (2008) the trend value Jtrend is defined in equation (6). Jtrend provides information about the gradient 
between data points. For practical implementation,  is replaced by .

(6)
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3.3 Residual Threshold Monitoring 
The introduced values J will be compared to a pre-set residual threshold Jth (the threshold for the peak 
value is Jth,peak and the trend value Jth,trend) to test if a faulty behaviour is present. The monitoring can be 
formulated as

 a faulty behaviour is detected, 
 no faulty behaviour is detected (Ding, 2008).  

4. Fault Simulation
4.1 Model 
To simulate the faulty behavior, a straightforward discrete thermal model of the wind turbine generator is 
designed in Nienhaus et al. (2012) and can be described in the following time invariant state-space 
representation with observer: 

  (7) 

  (8) 

Where  is the measured generator temperature (e.g. the stator winding temperature),  is the 
estimated generator temperature, Pl(k) are the power losses of the generator and  the ambient 
temperature. The constant parameters thermal resistance R and thermal capacity C describe the thermal 
behavior of the generator. The sample time of the discrete model is T. The design as well as the 
parameter estimation is shown by the authors in Nienhaus et al. (2012). The corresponding block diagram 
is shown in Figure 2. In this paper, faults are applied to the thermal model as shown in Figure 2. With this 
approach, it can be tested if the fault detection is able to detect certain faults.  

4.2 Fault Description 
In this paper, we will design exclusively additive faults. The faults are denoted with fa, fp and fs and shown 
in Figure 2. The faults are divided in three categories (Ding, 2008): 

 sensor fault fs: faults that affect the measurements directly, 
 actuator fault fa: faults that affect the actuator and 
 process fault fp: faults that are malfunctions of the process. 

For the sensor fault, a bias of 15 K will be assumed, and the fault signal fs(k) will be generated with a step 
function as shown in Figure 3. To design an actuator fault, we assume a bias of 37.5 % of the value of the 
total power losses Pl(k). The fault of amb(k) is designed as a bias of 15 K. The faults will be simulated with 
step functions as shown in Figure 4 and Figure 5. The process fault is designed as a step function as 
shown in Figure 6.  

Figure 3: Sensor fault function Figure 4: Actuator temperature fault function 
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Figure 5: Actuator power losses fault function Figure 6: Process fault function 

4.3 Simulation 
The model and the observer are implemented in Matlab/Simulink. The simulation is structured so that the 
process model (including the faults) represents the wind turbine generator including the observer of the 
fault diagnosis system. The system is simulated for a total time of 200 min with a constant ambient 
temperature amb and a sample time of T = 100 ms. The power losses Pl(k) are designed as a step function 
with the step at t = 10 min. Each fault is simulated separately. For each simulation, three different observer 
gains L are used (L1 < L2 < L3). The gain L defines how much the measured temperature  is 
influencing the model.  

5. Results 
In this section, the simulation results are presented divided by the fault described in section 4.2.  

 - the temperature with no fault in the system shows the expected heating as an 
logarithmic function starting at t = 10 min when the power losses Pl(k) are unequal to zero. 

 - the estimated temperatures shows how the model is adapting on the faulty system 
output depending on the used three different observer gains L.

5.1 Sensor fault 
First, the results of the sensor fault are shown in Figure 7. The following can be outlined: 

 - the temperature with a fault in the system shows the expected heating like the 
temperature with no fault until t = 50 min. At this point, it can be seen that the simulated fault adds 
up with the temperature of the system for each time point. 

 - the peak value shows a step with the height of the temperature fault at t = 50 min and 
later a decay to a constant peak difference between model and faulty system depending on the 
used three different observers gains L.

 - the trend value shows a peak at t = 50 min because of the step in the  signal.  

5.2 Actuator fault 
Second, the results of the actuator fault are shown in Figure 8 and 9. The following can be outlined: 

 - the temperature with a fault in the system shows the expected heating like the 
temperature with no fault until t = 50 min. At this point, it can be seen that the simulated fault adds 
up over time. Compared to the sensor fault it is not a step function. 

 - the peak value shows a logarithmic behavior.  
 - the trend value shows a peak at t = 50 min and a decay afterwards.  

5.3 Processor fault 
The processor fault shown in Figure 10 behaves in the same way as the actuator fault. 
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Figure 7: Simulation results for the sensor fault showing the temperatures (left), the peak value (middle) 
and the trend value (right) for the three different observer gains L. 

Figure 8: Simulation results for the actuator temperature fault showing the temperatures (left), the peak 
value (middle) and the trend value (right) for the three different observer gains L. 

Figure 9: Simulation results for the actuator power losses fault showing the temperatures (left), the peak 
value (middle) and the trend value (right) for the three different observer gains L. 
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Figure 10: Simulation results for the process fault showing the temperatures (left), the peak value (middle) 
and the trend value (right) for the three different observer gains L. 

6. Conclusion 
Based on the results, we conclude the following points: First, for each simulated fault, a significant peak 
value Jpeak can be calculated and plotted. The peak value shows two different behaviours depending 
where the fault occurs in the system. This presents a base for later fault isolation. It therefore can be 
distinguished if the fault occurs after (sensor fault) or inside/ before the feedback loop (actuator/ process 
fault). Second, the trend value Jtrend only shows an evaluable behaviour if a sensor fault occurs. This also 
can be used to distinguish the different faults and help to identify a sensor fault. Third, the observer gain L
plays a significant role in the detectability of the fault in the system. The L has to be chosen such that 
model uncertainties are compensated but fault detection is possible at the same time. It could be shown in 
the results that with varying L the behaviour of the peak and trend value is the same, except for variation in 
quantity. Therefore, by choosing a peak value threshold Jth,peak and a trend value threshold Jth,trend, faults 
can be detected as presented in section 3.3. Furthermore the presented method is able to detect faults 
also in transient stages and is therefore a valuable tool to complement the widely used pre-set alert 
thresholds. 
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