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This paper presents an applicable health monitoring method for Li-ion batteries based on profust reliability 
theory. The word “profust” derives from “probability” and “fuzzy-state”, which means that the profust 
reliability theory is a kind of fuzzy reliability theory based on probability assumption and fuzzy-state 
assumption. It defines a concept of transition from fuzzy success to fuzzy failure to characterize system 
performance. In this paper, charge cycles of a battery are analysed, and the profust reliability is employed 
to estimate battery health state as a health indicator. Then, all operational states are classified into five 
health levels through profust reliability values. This process contributes a transform from quantitative 
reliability index to qualitative health level, which is able to describe system performance in a more intuitive 
way. Owing to the appealing ‘fuzzy’ advantage, the profust reliability theory can be effectively applied to 
the health monitoring of Li-ion batteries. 

1. Introduction 
Prognostics and health management (PHM) is defined as a health management approach utilizing 
measurements, models, and software to perform incipient fault detection, condition assessment, and 
failure progression prediction (Kalgren et al., 2006). Activities of PHM date back to engine monitoring 
system of A-7E aircraft in 1970s. Currently, there are PHM methods for many different types of vehicles, 
systems, and products from electric components (Pecht and Gu, 2009) to the Joint Strike Fighter (Hess 
and Fila, 2002). 
Battery is a core component of various complex systems, which has a great influence on the performance 
of overall system (Goebel et al., 2008). Failure of a battery can lead to unsatisfied performance, 
unexpected halting problem, and even catastrophic failure. In this case, health monitoring of batteries is 
extremely considerable, which is able to estimate the battery operational state, and schedule operation 
strategies to guarantee maximum reliability, safety and economical efficiency (Saha et al., 2009a). There 
have already existed a large number of research focusing on battery health management (Saha et al., 
2009b). This paper proposes a novel health monitoring method for Li-ion batteries based on profust 
reliability theory (Cai et al., 1991, 1996). In the profust reliability theory, the system performance is 
described in fuzzy-states rather than binary states, and the profust reliability can be employed to measure 
real-time system performance through transitions among system operational states. Thus, it is more 
reasonable to use profust reliability theory to perform health monitoring. In this paper, the charge cycle of 
batteries is analysed, and real-time continuous charge capacity signal is obtained and used as a monitored 
parameter. Then, the profust reliability is calculated through state discretization of the continuous charge 
capacity signal, which characterizes the battery heath state as a health indicator, and then ranks all health 
states into different health levels. In future research, remaining useful life (RUL) prediction and operation 
strategy optimization will be performed based on the established health levels.  

2. Analysis of  Battery Charge Cycles 
The data of Li-ion batteries used here comes from NASA Ames prognostics data repository (Saha and 
Goebel, 2007). The battery data set records accelerated aging experiments of different batteries, which 
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are run through repeated charge and discharge cycles at different ambient temperature. Charging is 
carried out in a constant current (CC) mode at 1.5 A until the battery voltage reaches 4.2 V and then 
continued in a constant voltage (CV) mode until the charge current drops to 20 mA. Discharging is carried 
out at a CC level of specific values until the battery voltage falls to a specific value for specific batteries 
respectively. The experiments are stopped until the battery charge retention capacity drops to 70 % of its 
full capacity observed at the beginning. Here, we mainly concentrate on the charge cycles. The battery 
health state of each charge cycle is estimated, and the remaining charge cycle until the battery reaches 
EOL criteria is predicted using the proposed method. 
By taking battery #5 as an example, the data contains 167 whole charge cycles. As mentioned before, 
charge is carried out in a CC mode at 1.5 A until the battery voltage reaches 4.2 V and then continued in a 
CV mode until the charge current drops to 20 mA. For ease of visualization, the variations of charge 
voltage and current of 8 charge cycles are shown in Figure 1. 
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Figure 1: a) Charge voltage variation, b) Charge current variation 

Here, let ( )u t  and ( )i t  represent the corresponding voltage variable and current variable, respectively. In 
order to consider both ( )u t  and ( )i t , battery charge capacity is used as an assessable index in battery 
health estimation, which is defined in Eq.(1) 

( ) ( ) ( )
0

t
W t u i dτ τ τ= ⋅   (1) 

where ( )W t represents the charge capacity, and the unit is VAh. Then, the real-time charge capacity of all 
167 charge cycles is calculated using Eq.(1). Similarly, the real-time charge capacity of the preceding 8 
charge cycles are shown in Figure 2a. 
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Figure 2: a) Charge capacity variation, b) Error of charge capacity deviated from the standard value 

As we know, the first charge cycle after fully discharging is able to charge the battery to the maximum 
power, which corresponds to the highest curve in Figure 2a. In this case, we consider it as the fully healthy 
state of battery charge process, which also can be viewed as a standard charge cycle. Furthermore, we 
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consider that the battery starts to degrade after the first charge cycle. Then, let ( )e t represent the error that 
real-time variation of charge capacity deviates from the proposed standard curve of charge capacity 
variation. Thus, we have 

( ) ( ) ( )
1

 ,    2,3, ,167
k k

e t W t W t kΔ Δ Δ= − =
(2)

where ( )
1

W tΔ and ( )
k

W tΔ  are the real-time charge capacity at charge cycle 1Δ and kΔ , respectively. 

Obviously, for each charge cycle, ( )e t
is a continuous signal as shown in Figure 2b. 

3. The Health Monitoring Method for Li-ion Batteries Based on Profust Reliability Theory 

3.1 Theoretical part of the proposed method 
In this section, the profust reliability theory is used to monitor the performance of Li-ion batteries, where 
profust reliability value is used to evaluate the battery health state as a health indicator. In order to 
calculate profust reliability value proposed in (Cai et al., 1996), the continuous signal ( )e t  obtained above 
is supposed  to be discretized into different health states. Here, let 

( ) ( ){ }1i i iS e t a e t a−= ≤ ≤ (3)

where 
0

0 02, 2, ; , 1,2, ,n
n n i n

a aa a a a i i n
n
−= − = Δ = = + ⋅ Δ = (4)

( ) ( ) ( ){ }1 0n nS e t e t a or e t a+ = < > (5)

Then, the battery has discrete states 1 1, , nS S + . Let { }1 1, , nU S S += be the domain of discourse. In the 

domain U , system fuzzy success states can be defined as: 

( ){ }, ; 1,2, , 1i S iS S S i nμ= = + (6)

and fuzzy failure states 
( ){ }, ; 1,2, , 1i F iF S S i nμ= = + (7)

where ( )S iSμ  and ( )F iSμ  are the corresponding membership functions, respectively.  

Let { }; 1, , 1, 1, , 1T ijU m i n j n= = + = + , where ijm represents the transition from state iS  to state jS . In 

the domain TU , a transition from fuzzy success state to fuzzy failure state is defined as (Cai et al., 1996): 

( ){ }, ; , 1,2, , 1
SFSF ij T ijT m m i j nμ= = + (8)

Here, SFT is viewed as a fuzzy event, and the corresponding membership function ( )
SFT ijmμ  is determined 

as (Cai et al., 1996): 

( ) ( ) ( ) ( ) ( )
0SF

j i j iF S F S F S F S
T ij

S S if S S
m

otherwise

β β β β
μ

− >
= (9)

( ) ( )
( ) ( )

; 1,2, , 1F i
iF S

S i F i

S
S i n

S S
μ

β
μ μ

= = +
+

(10)

Let kΔ represent the k th charge cycle. The profust reliability at charge cycle kΔ can be defined as (Cai et 
al., 1996): 

( ) [ ]{ }1 does not occur during time interval ,k SF k kR P T −Δ = Δ Δ (11)

Eq.(11) only takes transition process during the charge cycle kΔ  into consideration. However, when the 

system state at charge cycle 1k −Δ  is more fuzzy failed than fuzzy successful, the initial system state at 
charge cycle 1k −Δ  should not be ignored any more. For example, assuming that the system has already 

stayed in full failure state at charge cycle 1k −Δ , the value of ( )kR Δ  should be equal to 0. However, SFT

does not occur during the charge cycle kΔ  indeed, which means that ( )kR Δ  is equal to 1 obtained 

through Eq.(11). Thus, when the system starts to degrade in the process of PHM, it is inappropriate to use 
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Eq.(11) to calculate profust reliability all the time. For such a purpose, a new algorithm of profust reliability 
is proposed here. 
Define fuzzy event:  

{ } does not occur during the charging cycle SF kA T= Δ

{ }1The battery is in fuzzy success state at charging cycle kB −= Δ

Here, system state at charge cycle 1k −Δ is taken into consideration. Then, the profust reliability at charge 

cycle kΔ  can be defined as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

1 1
1 1 1 1

1

1
SF i i

k

n n n n

T ij ij k S i S k F i S k
i j i i

R P A B P B

P A B P B P B

m p S Sμ μ φ μ φ
+ + + +

− −
= = = =

Δ = ⋅

= − ⋅ −

= − ⋅ Δ ⋅ ⋅ Δ − ⋅ Δ

   (12) 

where ( )ij kp Δ  represents the probability of transition from state iS  to state jS  at charge cycle kΔ , and 

( )
SFT ijmμ  represents the corresponding membership function; ( )1iS kφ −Δ  represents the probability of 

system state iS  at charge cycle 1k −Δ , and ( )S iSμ  and ( )F iSμ  represent the corresponding fuzzy success 

and failure membership functions, respectively. 
Because the health state of complex system cannot be just defined as "successful" and "failed" through 
single threshold segmentation, system states should be classified into different health levels in terms of the 
range of ( )kR Δ . Here, we have 

[ )
[ )
[ )
[ )
[ )

Healh Level-1 0,0.4

Healh Level-2 0.4,0.5

System Health Level Healh Level-3 0.5,0.6

Healh Level-4 0.6,0.8

Healh Level-5 0.8,1

R

R

R

R

R

∈

∈

= ∈

∈

∈

   (13) 

In this case, all operational states of a battery can be classified into 5 health levels. This process 
contributes a transform from a quantitative reliability index to qualitative health levels, which can describe 
system performance in a more intuitive way. 

3.2 Algorithm Implementation and simulation results 
In order to calculate the profust reliability ( )kR Δ  of each charge cycle through Eq.(12), two steps are 

supposed to be implemented. 
1) Calculation of fuzzy success/failure membership function 
Under the fuzzy-state assumption, the operational state of charge capacity characterizing Li-ion batteries 
can be described with fuzzy health membership of the continuous signal ( )e t . In this case, appropriate 
selection of fuzzy health membership is critical to health monitoring accuracy. Here, according to battery 
prior knowledge, experiment data, and expert experience, we have 

( )( )

( ) ( ) ( ]

( ) ( ]
( ) ( ) ( ]

( ) ( ] ( )

2
2, 1

1
1 1,1

, 2, 1,1, 2
2

1, 2
1

0 , 2 2,

S

e t
e t

e t
e t

e t
e t

e t

μ

+
∈ − −

∈ −
− − =

−
∈

−
∈ −∞ − ∪ +∞

   (14) 

and
( )( ) ( )( ), 2, 1,1,2 1 , 2, 1,1,2F Se t e tμ μ− − = − − −    (15) 

Then, for discrete state ( )1, ,iS i n= , we have 

( ) ( )( ) ( )
1

1 i

i

a

S i Sa
n

S u e t de tμ
−

=
Δ

   (16) 
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( ) ( )( ) ( )
1

1 i

i

a

F i Fa
n

S u e t de tμ
−

=
Δ

   (17) 

Furthermore, we can obtain ( ) ( )1 10, 1S n F nS Sμ μ+ += =  through Eq.(14). 

2) Calculation of transition probability and state probability 
Let ( ) ( )( )( ) ( )1 1k ij k n n

P p
+ × +

Δ = Δ  represent the transition probability matrix of battery states at charge cycle kΔ ,

where ( )ij kp Δ  represents the probability of transition from state iS  to state jS . The value of ( )ij kp Δ  can 

be estimated through maximum likelihood estimation (MLE), 

( )
( ) ( )( )

( ) ( )( )
0

1

0
1

,

,

k k
ij n

ij k n
k k

ij n
j

n t t
p

n t t
+

=

Δ =    (18) 

where ( ) ( )( )0 ,k k
ij nn t t  represents the number of transition from state iS  to state jS  in time interval ( ) ( )

0 ,k k
nt t ;

( )
0

kt  represents the start time of charge cycle kΔ , and  ( )k
nt  represents the end time. Let 

( ) ( )( ) ( )1 1ik S k n
φ

× +
Φ Δ = Δ  represent the state probability vector at charge cycle kΔ . After obtaining ( )kP Δ , we 

have

( ) ( ) ( ) ( ) ( )1 0
1

k

k k k i
i

P P−
=

Φ Δ = Φ Δ ⋅ Δ = = Φ Δ ⋅ Δ∏    (19) 

where ( )0Φ Δ  represents the state probability vector of the first charge cycle. Assume that state hS  in 

domain U  is the fully healthy state. In this case, for ( )0Φ Δ , we have 

1

0; 1, , +1  and  
h

i

S

S i n i h

φ
φ

=

= = ≠
   (20) 

From the above, using obtained voltage and current signals from accelerated aging experiments, the 
profust reliability ( )kR Δ  and the health levels of all 167 charge cycles can be calculated through Eq.(12) 

and Eq.(13). Up to now, the health monitoring of Li-ion batteries is achieved, and the result is shown in 
Figure 3. 
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Figure 3: Health monitoring result of all 167 charge cycles a) profust reliability value, b) Health level 
variation 

965



4. Conclusion 
This paper proposes a health monitoring method for Li-ion batteries based on profust reliability. Charge 
cycles of batteries are analysed here, and the profust reliability value is used to estimate battery health 
state as a health index. Then, all operational states are ranked into five health levels using profust 
reliability values. In future research, the remaining useful life or remaining charge cycles of Li-ion batteries 
should be predicted based on the proposed health levels. Furthermore, the proposed health monitoring 
method can be applied to other products and systems, and a combination between prognostics and health 
management (PHM) and profust reliability theory is supposed to be further implemented. 
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