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Electrical systems, such as those consisting of electrical power driving motors and actuators, are varied 
and include industrial, aerospace, and automotive applications. These power systems are critical and must 
provide stable operating voltages for various modules found throughout the host system, including 
electromechanical actuators (Goodman et al., 2007), CPU-based control systems, and widely varying 
loads. Operating temperatures can vary as well, with vibration and mechanical shock conditions adding 
further stress and degradation of components in the power system. A key advantage of electronic 
prognostics is the monitoring of health of a power system in these critical systems. With prognostics, 
impending failure can be detected and mitigated. In addition, the prognostics and health management 
(PHM) system can help optimize the support logistics and reduce costs.  
In this paper, an overview of signature-based PHM technology to detect anomalies and prognostic 
reasoning is presented: A signature is extracted from condition-based data and is called a fault-to-failure 
progression (FFP) signature. Thereafter, a representative PHM system that extracts and processes 
dynamic degradation signatures for a critical DC regulated power system is described. The hardware and 
software integration involved with the addition of advanced PHM functionality to a host system is 
discussed, along with resulting output display and data that can be used to provide dynamic state-of-health 
(SoH) and remaining useful life (RUL) estimates.  

1. Introduction 
Prognostic health management (PHM) systems can support the timely mitigation of faults found in complex 
systems before catastrophic failures occur. Complex systems often incorporate data buses, which can be 
non-invasively monitored to extract condition-based fault-to-failure progression (FFP) signatures which can 
be processed to detect degradation, and used to provide estimates of remaining useful life (RUL) and 
state-of-health (SoH) of the system (Goodman, 2007, pp. 1902-1906). To illustrate this capability, this 
paper presents results from a Model-based Analysis and Prognostic Reasoner (MAPR) that Ridgetop 
Group, Inc. is developing for a NASA-sponsored (U.S. National Aeronautics and Space Administration) 
Small Business Innovation Research (SBIR) program (contract NNX11CA04C, 12 June 2011 to 11 June 
2013).  

1.1 Benefits of PHM-enabled systems 
The motivations for PHM-enabling systems include the following: (1) prognostics provides advanced 
warning of impending failure conditions on critical systems and avoidance of expensive system down-time; 
(2) Physical evidence of degradation is the basis for maintenance on the system, not an arbitrary time 
interval; (3) PHM can reduce support costs through optimized timing of service and parts replacement; and 
(4) Autonomic Logistics Information Systems (ALIS) can be established, placing spare parts and 
provisions where needed. 
Diagnostics indicates the state of the system to perform its designed function, while prognostics predict 
when a system is likely to fail. Predictive diagnostics incorporates sensors (existing or additive), data 
collection routines, and algorithms that provide state-of-health (SoH) and remaining useful life (RUL) of the 
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system under observation. Wear-out conditions can vary widely, depending on the environment in which 
the systems are placed so evidence-based indications are valuable. Health Management, in turn, takes the 
prognostics and utilizes the predictive capabilities to schedule maintenance when the system is taken off 
line. This reduces the overall life cycle cost of the system. 

1.2 Complex systems 
Systems can assume a multi-level hierarchy spanning at least five levels: (1) IC (or die); (2) components; 
(3) boards; (4) module/assembly; (5) system and system-of-systems: a fault can occur in any level and 
propagate into a system failure. From a practical perspective, state information is extracted as non-
intrusively as possible utilizing existing sensors and data measurements. 

1.3 Illustrative example of a complex system 
Figure 1 is an illustrative example of a complex system which is PHM-enabled and which consists of the 
following: (1) a 24 VDC switch-mode power supply (SMPS); (2) a brushless DC motor (BLDC); and (3) 
PHM executable software. There is a single DC voltage output sensor and three AC current sensors – all 
non-invasive (see Figure 2). Data are acquired and placed onto a data bus, and algorithms are used to 
condition and process the data to extract multiple FFP signatures (one for each fault mode): the power 
supply has one fault mode (loss of filtering capacitance); the servo control for the motor has six fault 
modes (the six power switching transistors used to produce the motor currents); and the motor load has 
one fault mode (excessive load current). The FFP signatures are then processed by Kalman Filter 
algorithms to remove noise. For each set of captured data (time-stamped data), the multiple FFP 
signatures are then processed by an advanced time-to-failure (ATTF™) kernel program which adapts FFP 
signature models to the input data. Each adapted FFP signature model is used to produce RUL estimates 
and, in turn, the RUL estimates are used to produce SoH estimates. The RUL and SoH results are further 
processed to identify which fault mode is likely to cause the system to fail first: smallest RUL and smallest 
SoH, each having an associated fault mode. An application front-end program provides graphical user 
interface (GUI) support for PHM control and visualization of results. The phase currents are sampled 
during the positioning of the motor. The algorithms do not assume that any detected fault is independent of 
or dependent on any other detected fault. 

2. Condition-based FFP signatures for anomaly and prognostic reasoning 
When components degrade from a state of no damage to a failed state, the electronic device or assembly 
that is failing typically produces one or more condition-based FFP signatures.  

2.1 Example FFP signature 
One example, seen in Figure 2, is the well-known voltage ripple signature increase as a power supply filter 
fails. The data shown came from a power supply testbed that was fault-injected by automatically stepping 
changes in the filter capacitance: the original, noisy and stepped data (black) was signal-conditioned (blue) 
before processing: (1) ripple voltage measurements below a “floor” value (green) are defined as “no 
detectable degradation;” (2) measurements between the defined floor value and a “ceiling” value (red) are 
defined as “degraded;” and (3) measurements at or above the defined ceiling value are defined as “failed” 
and the power supply has reached the effective end of its useful life. Other signatures have been identified 
and characterized, including power supply feedback failure; motor/actuator failure evidenced by increase 
friction on the stator; metal-oxide field-effect transistor (MOSFET) failure in a motor winding circuit; and 
transmission line failure because of kinking and/or crushing. The challenge is to use and/or develop a non-
invasive means to capture data from which at least one FFP signature can be extracted for PHM. 

FFP signature data is normalized and made dimensionless to facilitate defining and using FFP signature 
models to support many applications. Eq(1) is used to convert FFP signature data into ratios of normalized 
values, such as those seen in Figure 2. 

VR_FFP = (VR – VRNOM)/VRNOM                   (1) 

Where VR_FPP is the normalized, dimensionless FFP signature, VR is the measured ripple voltage, 
and VRNOM is the nominal, non-degraded value of the ripple voltage. 
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Figure 1: Architectural block diagram - testbed with executable PHM software 

2.2 FFP Signature modeling 
Referring to Figure 2, the creation of an FFP signature model is straightforward: (1) create a representative 
curve using a set of normalized, dimensionless FFP signature data; (2) divide the time between the start of 
detectable degradation and failure into three periods having an approximate ratio of 8:7:5; (3) measure the 
amplitudes at those times; and (4) specify the resulting four model points (the red circles on the plots in 
Figure 2) using an application programming interface (API) header file. In modeling, exact times and 
amplitudes are not required because an ATTF program kernel adapts the FFP model as data are received 
and processed. 
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Figure 2: Example FFP signature – ripple voltage increases as power supply filter fails 
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2.3 Noise and Kalman Filtering 
Sampled data is very noisy, especially if the ripple voltage of an SMPS is sampled, for example, thousands 
of times in one millisecond once every 30 minutes over a time span in the tens of thousands of minutes. 
After conditioning bus data into a single data point per sample, Kalman Filtering is used to remove noise to 
produce “clean” FFP signatures, such as the blue-dotted plot in Figure 2 of the FFP signature data after 
conditioning, filtering, and normalizing. 

2.4 Multiple sensors and fault modes 
Referring to Figure 3, multiple non-invasive, existing sensors are used to measure the three phase 
currents from which seven FFP signatures are extracted for the following fault modes: increase in on-
resistance of any one of the six power-switching MOSFETs (six FFP signatures), and an increase in 
friction or weight loading on motor (one FFP signature). An 8th FFP signature for the loss of filtering 
capacitance is extracted from a non-invasive monitoring of the DC voltage of the power supply. 

Figure 3: Simplified diagram of a power supply and brushless DC motor  

3. Advanced-Time-to-Failure (ATTF) program kernel 
In Figure 2, it is seen that the defined FFP signature model (the four circles) does not match the data. For 
each data point, except the first, received by the ATTF kernel program, the FFP signature model is 
adapted to the data. The adapted FFP model is then used to project a probable time-to-failure (TTF) – very 
much like Extended Kalman Filtering. The estimated TTF and the data point time (DPT) are then used to 
calculate an estimated RUL using Eq(2) and an estimated SoH value using Eq(3). 

RUL = (TTF – DPT)                                                                                                                                  (2) 

SoH = [1 – (FFPAMPL) / (FFPAMPL_FAIL – FFPAMPL_GOOD)] * 100                                                                   (3) 

Where FFPAMPL is the amplitude of the data (the blue-dotted plot in Figure 2), FFPAMPL_FAIL and 
FFPAMPL_GOOD are defined by the FFP signature model. 

3.1 FFP signature processing: RUL and SoH estimates, analysis of results 
Figure 4 is a plot of the SoH estimates produced by ATTF for the FFP signature data shown in Figure 2; 
and Figure 5 is a plot of the relative accuracy of the SoH and RUL estimates. It is seen that in less than 10 
data points, the ATTF algorithms converged to solution accuracy of better than 90% and better than 95% 
in less than 15 data points. Measurements of accuracy of RUL and SoH estimates are based on a method 
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