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Second-order perturbation solutions have been obtained for the simple physical model describing the 
liquid pool spreading with an instantaneous spill, and are shown to improve over the first-order 
perturbation solutions. The second-order solutions to the non-dimensional governing equations for the 
model are derived to obtain more general solutions. Non-dimensional parameters are sought as the 
governing parameters for the non-dimensional equations, and the non-dimensional evaporation rate per 
unit area is used as the perturbation parameter. It is revealed that the number of governing parameters is 
reduced to two from three by non-dimensionalization. The second-order solutions exhibit a definite 
improvement over the first-order solutions with respect to the pool volume and the pool radius. The 
second-order solutions for the pool volume agree remarkably with the numerical solutions; however, there 
is still a little difference between the second-order solutions and the numerical ones for the pool radius at 
the final stage of spread. 

1. Introduction 
The study of liquid pool spreading plays an essential role in the quantitative risk assessment of 
accidentally released cryogenic liquids, such as LNG and liquefied hydrogen because the spreading of 
such liquids is the first step in the development of multi-staged accident sequences leading to a major 
disaster. Generally, leak is placed on the top of the Fault Tree Analysis, which means the final step of 
hazard identification or qualitative risk analysis. Simultaneously, the leak is an initiating event of the Event 
Tree Analysis, which is the beginning of accident because spilled flammable liquid can cause fires and 
explosions. It is, therefore, essential to study liquid pool spreading for the estimation of fire and explosion 
risks. 
A number of numerical simulations have been performed for certain model equations governing the pool 
spread. Various types of governing equations, ranging from a simple physical model to the full Navier-
Stokes equation (Venetsanos and Bartzis, 2005), are available for numerical simulations. The model 
based on shallow layer equations (Stein and Ermak,1980; Verfondern and Dienhart, 1997, 2007; Brandeis 
and Kansa, 1983; Brandeis and Ermak, 1983; Briscoe and Shaw, 1980) under the assumption of 
axisymmetry, solves for the velocity and pool height with respect to radius and time. The simplest 
mathematical model, which can be called the simple physical model (Briscoe and Shaw, 1980) describes 
the pool spread in terms of how the pool radius and height evolve in time. The corresponding equations 
consist of two ordinary differential equations with respect to time and one algebraic equation. For the 
purpose of engineering design and analysis, however, the shallow layer model presents a problem in 
determining the size of the pool fire because the model allows the leading-edge wave to separate from the 
spreading pool to form an annulus. 
In this study, a set of second-order perturbation solutions are derived, as an improvement over the 
previous first-order perturbation solutions (Kim et al., 2011), for the simple physical model describing the 
liquid pool spreading with an instantaneous spill. The second-order solutions are derived for the governing 
equations after introducing dimensionless governing parameters in order to obtain more generic solutions. 
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The normalized, dimensionless evaporation rate per unit area is used as the perturbation parameter. The 
results demonstrate that the second-order solutions exhibit a definite improvement over the first-order 
solutions with respect to the pool volume; however, there is still a little difference between the second-
order solutions and the numerical ones with respect to the pool radius at the final stage of spread.  

2. Governing equations 
Neglecting the surface tension and viscous drag, the driving force for the pool spread is gravity. Although 
this force acts downwards, it creates an unbalanced pressure distribution in the pool, causing the pool to 
spread laterally. Pool spread is governed by the following set of equations (Briscoe and Shaw, 1980): 

dR H
dT

α=            (1) 

where R is pool radius (m), T is time (s), α is 2g (m/s2), g is gravity (m/s2) and H is pool height (m), 
respectively. 

2dV E R
dT

π β= − +            (2) 

where V is pool volume (m3), E is evaporation rate per unit area (m/s) and  β is the spill source rate (m3/s) 
for a continuous spill, respectively. Therefore, for an instantaneous spill, β becomes zero. To complete the 
model, the following algebraic equation is required: 

2
VH
Rπ

=            (3) 

3. Initial conditions and solutions 
If the liquid is instantaneously released from storage, the following initial conditions can be used: 

,(0) , (0) (0)i i iV V R R H H= = =           (4) 

From Eq. 1 through 4 it is understood that two initial conditions and the evaporation rate per unit area, E, 
govern the model equations. To make the governing equations dimensionless, the following variables are 
introduced: 

/ , / , / , /i i i iv V V r R R h H H t T τ= = = =            (5) 

where v is dimensionless pool volume, r is dimensionless pool radius, h is dimensionless pool height and t 

is dimensionless time and τi is characteristic time ( )/iR α= , respectively. Using the dimensionless 

variables in Eq. 5, the following non-dimensional governing equations are derived: 

2dv r
dt

ε= −            (6) 

dr h
dt

δ=           (7) 

2
vh
r

=           (8) 

where ε is dimensionless evaporation rate ( )/i iE Hτ=  and / .i iH Rδ =  From Eq. 6 through 8 it can be 

seen that the two dimensionless parameters, ε and δ, corresponding to the dimensionless evaporation rate 
per unit area and the aspect ratio of the initial pool, respectively, control the non-dimensional governing 
equations. The initial conditions are 

1, 1, 1v r h= = =  at 0t =            (9) 

The evaporation rate per unit area of the pool E, which is referred to as the constant regression velocity, 
generally exhibits very small values (about 4.2×10-4 m/s for LNG). Therefore, the dimensionless 
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evaporation rate, ε, is chosen as the perturbation parameter. The perturbation solutions can then be 
expressed in the following forms: 

2
0 1 2v v v vε ε= + +          (10) 

2
0 1 2r r r rε ε= + +          (11) 

2
0 1 2h h h hε ε= + +          (12) 

where terms higher than O(ε2) are omitted. In this study, a second-order expansion is used, and terms up 
to O(ε2) are retained. Substituting Eq. 10 through 12 into Eq. 6 through 8 and equating the coefficients of ε0, 
ε  and ε2 on both-hand sides, we obtain 

0
0

dr
h

dt
δ=          (13) 

1 1

02
dr h
dt h

δ
=          (14) 

2
2 2 1

3/2
0 02 8

dr h h
dt h h

δδ
= −          (15) 

0 0
dv
dt

=          (16) 

21
0

dv
r

dt
= −          (17) 

2
0 12

dv
r r

dt
= −          (18) 

0
0 2

0

v
h

r
=          (19) 

0 11
1 2

00

2h rv
h

rr
= −          (20) 

2
2 2 1 1 1

2 02
0 0 00

2 2v r r h r
h h

r r rr

⎡ ⎤⎛ ⎞⎢ ⎥= − + −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

         (21) 

Nine new equations (Eq. 13 through 21) have been obtained; therefore, the number of initial conditions 
must increase to nine. Applying the conditions in Eq. 9 to Eq. 10 through 12 and equating the coefficients 
of ε0, ε  and ε2 on both sides, we get 

0 0 01, 1, 1v r h= = =  at 0t =          (22) 

1 1 10, 0, 0v r h= = =  at 0t =         (23) 

2 2 20, 0, 0v r h= = =  at 0t =         (24) 

Solving Eq. 13 through 21 with the initial conditions in Eq. 22 through 24 yields 

0 1 2r x= +                 (25) 
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2 3

1

1
2 3

2 1 2

t t
r

x

δ
δ +

= −
+

               (26) 

( )
( )

3
3 2

2 3/2
1 68 204 225 60

1440 1 2

tr x x x
x

δ
= − + + +

+
                  (27) 

where .x tδ=  And 

0 1v =                  (28) 

( )2
1v t tδ= − +                      (29) 

2 4 3

2 12 6
t tv δ δ

= +                      (30) 

0
1

1 2
h

x
=

+
                (31) 

( ) ( )
( )

3 2

1 2

/ 3 / 21
1 2 1 2

t tx t
h

x x

δ δ ++
= − +

+ +
                   (32) 

( )
( )

3
3 2

2 3
1 28 84 105 45

180 1 2

th x x x
x

δ
= − + + +

+
                 (33) 

4. Results and discussion 

For the purpose of numerical evaluation, a spreading of LNG on the ground with the values of E = 4.2×10-4 
m/s and density (ρ = 420 kg/m3) has been considered. The result (Kim et al., 2011) for the pool volume is 
shown in Figure. 1, in which the difference between the numerical solution and the first-order solution 
becomes evident in the late stage of spread when the time is large. This discrepancy comes from the 
secular terms (Nayfeh, 1981) that lead to the non-uniform expansion when time is large. 
From Eqs. 28 and 29, the first-order expansion for the pool volume can be expressed as 

2

2i
bV V E aT Tπ ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
         (34) 

where 2
ia R=  and ( )1 22 ib Vα π= .  

In Eq. 34, the second term within the bracket should be much smaller than the first term because the 
second term has been introduced as the first correction term for the first term. As time increases, however, 
the order of the correction term, O(ET), approaches O(1). That is, the first correction term becomes of the 
order of the main term for a large T. To address this anomaly, a uniform expansion would be adequate; 
however, it is beyond the scope of the present study. Instead, the second-order expansion has been 
pursued. 
The second-order solutions have been calculated for the initial radius of the pool of 0.1 m, 1 m, and 10 m 
with the constant initial volume in order to explore the effect of the major parameters on the solutions. As 
can be seen in Figures. 2-4, the second-order solutions for the pool volume agree remarkably with the 
numerical solution. Moreover, the second-order solutions display a noticeable improvement over the first-
order solutions even in the late stage of spread, and the two perturbation solutions are nearly 
indistinguishable except the final stage. The results also demonstrate that the second-order perturbation 
solutions readily accommodate the change in the aspect ratio of the initial pool. 
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Figure 1: The pool volume vs. time Figure 2: v vs. t with Vi = π m3 and Ri = 0.1 m 
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Figure 3: v vs. t with Vi = π m3 and Ri = 1.0 m Figure 4: v vs. t with Vi = π m3 and Ri = 10 m 
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Figure 5: r vs. t with Vi = π m3 and Ri = 0.1 m Figure 6: r vs. t with Vi = π m3 and Ri = 1.0 m 

In the case of the pool radius, however, there is virtually no difference between the two types of 
perturbation solutions when time is large, as seen in Figures. 5-7. It is shown that the perturbation 
solutions generally allow for a change in the aspect ratio of the initial pool. As in the case of the pool 
volume, the second-order solutions for the pool radius demonstrate the improvement over the first-order 
ones. However, there is still a little difference between the second-order solutions and the numerical ones 
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at the final stage of spread. Therefore it can be said that the second-order solutions for volume are more 
accurate than them for radius. 
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Figure 7: r vs. t with Vi = π m3 and Ri = 10 m 

5. Conclusion 
The model equations for the spread of a liquid pool with instantaneous spill have been made 
dimensionless to reveal that these equations are governed by two parameters, namely, the dimensionless 
evaporation rate and the aspect ratio of the initial pool. It is noteworthy that the original governing 
equations, before being made dimensionless, contain three governing parameters instead of two.   
For the dimensionless governing equations, the second-order perturbation solutions are obtained. It is 
found that the second-order solutions exhibit a definite improvement over the first-order solutions with 
respect to the pool volume and the pool radius. The second-order solutions for the pool volume agree 
remarkably with the numerical solutions; however, there is still a little difference between the second-order 
solutions and the numerical ones for the pool radius at the final stage of spread. The second-order 
solutions readily accommodate changes in the major parameters. 
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