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In this work we present a novel hand held electronic nose. This electronic nose is a lightweight 

instrument with wireless communications capable of stand alone operation. It has been designed to 

accept and work with several types of resistive microchemical sensors. The electronic nose can be 

operated stand alone or controlled externally by a personal computer. 

The external measurement and control program has been developed in Labview. Although this device 

has been developed for indoor applications it is versatile enough to be used as a general purpose low 

cost electronic nose. A low volume microsensor chamber has been designed to accept several sensor 

packages. The device has been tested in laboratory with volatile organic compounds (VOCs) such as 

acetic acid, acetone, ethanol, propanol, hexanal, ethyl acetate, acetaldehyde, butanediol, toluene and 

xylenes. The external program that controls the measurements performs real time data processing 

through linear pattern recognition techniques such as principal component analysis (PCA). Non linear 

pattern recognition techniques such as neural networks have been developed in Matlab for 

identification and classification purposes. Comparison between these methods is accomplished. 

1. Introduction 

Although there are a wide range of commercial available electronic noses few of them are really 

portable (Wilson et al., 2009). Moreover, few of them are designed for remote operation. In the past 

years we have developed several prototypes of portable, wireless electronic noses under a generic 

name of WiNOSE (Santos et al., 2010; Santos et al., 2011). The first two prototypes were intended to 

be operated outdoors. For this reason they included solar cells and several rechargeable batteries 

allowing continuous operation for long time periods. The model presented here is smaller, designed to 

perform indoors, hand held and capable of stand alone operation.  

2. Instrument description 

2.1 Hardware 
A schematic of the new WiNOSE is shown in Figure 1. It consists of two gas inlets that are switched 

through a three way electrovalve (SMC S70_ES) whose output is connected to the sensors cell that 

contains the microsensor array. A photograph of the electronic nose used is shown in Figure 2. The 

low volume microsensor cell, the pump, the electrovalve and the antenna are placed on the left board. 

The electronics is placed in the right board inside the case. 

One of the gas inlets has a carbon filter and is intended to provide clean air as reference baseline. 

Downstream are located the temperature sensor and the pump (Rietschle Thomas model 2002). 

The whole system is controlled by a digital signal controller (DSC Microchip model 

dsPIC33FJ128GP306). It is a 16 bit microcontroller with 16 Kb of Ram and 128 Kb of FLASH memory.  
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Figure 1: Schematic diagram of the electronic nose 

It has several analog to digital converters (A/D) inputs for sensor measurements and several pulse 

width modulation (PWM) outputs for sensor heating. Main measurement parameters are shown in a 

LCD (Figure 3). The LCD is a touch screen that allows the introduction of several measurement 

parameters, as pump and heaters power, as well as electrovalve switching.  

 

Figure 2: Photographs of the electronic nose. Left: without the cover showing the antenna, sensors cell, 

pump and electrovalve in one board and the main electronic board in the case. Right: the electronic 

nose with the cover taking measurements. 
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Figure 3: LCD screen. Left: measurement screen (Si, sensors resistance; Hi, heater power; PP, pump 

power; TE, temperature; BT, battery charge). Right: configuration screen with the initial heater and 

pump power and heater ramp value. 

It has an internal 2 Gb SD memory card for data storing. It gives the electronic nose an autonomous 

capacity. However in this operation mode there is no data analysis. Several rechargeable batteries give 

about 8 hours of autonomy to the e-nose. 

Wireless communications are provided by a Wifi transceiver. A point to point communication is 

established with a host computer for remote operation. 

The sensors cell and board are designed to interface to microsensors in a TO-5 12 leads package but 

it is easily adaptable to other packages. The system can measure up to 4 resistive sensors and 

provides independent heating for each one. The tests performed in this work have been done with a 

commercial microsensor (SILSENS MSGS-4000). It is made of four thin nanocrystalline tin oxide layers 

deposited over micromechanized silicon hot plate. One of the sensors is doped with palladium. 

As this model has no flowmeter a calibration of the pump is necessary. 

2.2 Software 
The instrument is controlled by a program developed in LabVIEW. It has two main operation modes: 

training and classification. In training mode a series of known chemicals is presented to the e-nose and 

the results are stored in a database. In classification mode an existing database is loaded and the 

measurements are classified in real time in one of the classes previously defined. 

The program displays and controls the measurement parameters (temperature, flow, sensor 

resistance, temperature, valve status, battery status, pump power). It automatically generates the 

response database. Several programs developed in Matlab have been integrated in LabVIEW through 

mathscript to perform pattern recognition. Real time classification is based in principal component 

analysis from the response database. The algorithm calculates normal distribution parameters of each 

different training class in the PCA space and then calculates the probability corresponding to the 

unknown measurement. The sample is classified as the class with higher probability. 

The results were compared with a previously developed non linear pattern recognition method based 

on probabilistic neural networks (PNN) a special case of radial basis function classifiers (Gutierrez-

Osuna, 2002). 

3. Results 

Two groups of measurements have been done in order to create two different response databases. In 

the first one eight different VOCs have been measured: acetic acid, acetone, ethanol, propanol, 

hexanal, ethyl acetate, acetaldehyde and butanediol. In the second group four similar VOCs have been 

tested: toluene, o-xylene, m-xylene and p-xylene. 

The sensors operating temperatures in all tests were 150, 200, 250 and 300 ºC. Flowrates were set to 

70 mL/min for adsorption and 115 mL/min for desorption. Adsorption time was 20 s and desorption 
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time was 160 s. These times were too short for equilibrium measurements but allowed fast and 

reproducible responses. However, due to the lower volume of the new sensors cell design, the 

response was faster than in the previous models. 

One mL of each compound was placed in a 20 mL vial and kept at 16 ± 1 ºC by a Peltier system. The 

measurements were repeated a minimum of 10 times. The response was calculated as the ratio 

between the sensor resistance in filtered air to the sensor resistance at the end of the sampling time 

and store in a file. In training mode the program also stored the compound name. 

Figure 4 shows the PCA score plot of the responses for VOCs. Each response is a point in the plot and 

each compound is represented by a different symbol. The ellipses represent the estimated normal 

distribution of each gas calculated by estimating the covariance matrix of their responses. The ellipses 

drawn in the figure correspond to the equiprobability surface that encompasses the 90% of the 

probability of that given normal distribution. The PCA with three components shows a very good 

separation among the different gases. 

The same graphic for toluene and xylenes is plotted on Figure 5. In this case the system does not 

separate well m- and p-xylenes, but shows a better separation of toluene and o-xylene from the other 

two. 

 

 

 

Figure 4: PCA score plot for VOCs 
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Figure 5: PCA score plot for toluene and xylenes. 

As online classification we use a probabilistic approach (centroid method) that supposes that the 

measurements form a normal distribution. We assign the test sample to the gas witch probability of its 

estimated normal distribution at that measurement point is higher. This method is equivalent to a 

quadratic discriminant analysis (Hastie et al., 2008) but not only gives the classification result but also a 

quantification of the probability. Example of classification results output for one measurement (that 

corresponds to an acetone response) is shown in Table 1. Since this method has the advantage of 

giving different probabilities for the different gases a list can be given in each measurement allowing 

the assessment of uncertainties as shown in Table 1.  

Table 1: Classification results of an acetone measurement 

Rank  Gas Probability 

1 Acetone 61.4 

2 Hexanal 41.8 

3 Acetaldehyde 24.0 

4 Propanol 12.0 

5 Ethanol 8.9 

6 Ethyl acetate 1.5 

7 Acetic acid 0.1 

8 Butanediol 0.0 

 

To validate the method of classification we use leave one out cross validation, leaving one sample out 

and performing the whole analysis for each sample taken. This method allows us to asses the whole 

classification with a small number of samples. Figure 6 shows the classification results for toluene and 

xylenes with an overall performance of 71.9 %. For VOCs the performance is 97.5 % as only two of the 

acetone measurements are not correctly classified. In the previous e-nose models a probabilistic 

neural network was used to classify the measurements off-line. The validation of those analyses gave 

98.8 % accuracy for generic VOCs and 73.6 % for toluene and xylenes, very close to the performance 

of the centroids method. For small datasets the centroid method is easier to program and faster than 

the probabilistic neural network method. 
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Compared with the previous developments this e-nose is lighter, faster and performs classification 

tasks in real time. Future work will focused in two fields. The first one is the study of high sensitivity low 

power sensors based on nanomaterials, mainly semiconductor nanowires and nanofibers. The other 

one is the software improvement for real time quantification. 

 

 

Figure 6: Classification results for toluene and xylenes by centroid method. 
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