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Mixed-integer optimization is a common approach to handle decision-making problems. Nevertheless, 

such an approach still presents certain operational limitations, especially for online superstructures. 

One of these limitations is given by Jacobian singularity, which arises for certain combinations of the 

set of Boolean variables and which easily leads to possible infeasible numerical solutions. This paper 

proposes a novel approach to overcome this problem, ensuring the use of mixed-integer optimization 

also to solve online issues. The case of nitrogen supply for the Thyssen-Krupp steel mill placed in Terni 

(Italy) is considered as validation case. 

1. Introduction 

The optimization of gas transport network is a very important industrial problem (Martin et al., 2006; 

Ehrhardt and Steinbach, 2005; Domschke et al., 2011). Many industrial gases production plants are 

directly connected to tonnage users such as steel mill plants and refinery plants requesting thousands 

of Nm
3 

per hour of gases at different pressures and without a previously accorded planning. Therefore 

a strategy to react rapidly and flexibly to the requests will be of significant importance for the gas 

company to reduce energy consumption and to better exploit plant performances. This leads to a very 

complex problem to solve because of the Boolean nature of the variables involved, which is 

challenging either for a mathematical point of view or to better tackle with the business challenge 

(Ierapetritou et al., 2002; Floudas et al., 2005; Glankwamdee et al., 2008; D'Isanto et al., 2011). Here it 

is presented a new simulation and optimization tool for this problem. The situation is basically the 

minimization of distribution costs (for nitrogen only) from the gas production site (Linde Gas Italia, 

Terni) to a high capacity steelworks plant (Thyssen-Krupp); to supply Thyssen-Krupp, an existing 

network is used. It is rather complicated since it has two different sources, consisting of two separate 

air separation units, with one of them that produces gas products only and the other one that produces 

both liquid and gas products. Moreover, the distribution line of a disposed air separation unit is still 

operating and it can be used whenever the energy cost makes it appealing. The gaseous nitrogen 

distribution network here considered includes several compressors dedicated to the supply of a high-

capacity steelworks plant that requests nitrogen at three different pressures with a demand that 

significantly changes many times within the day due to different steel treatments and castings. The 

energy consumption for the entire distribution network is high due to the large amount of power for the 

compression work, but also to the fast-response required to adapt the distribution network to the 
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instantaneous and unpredictable changes in nitrogen demand. Energy costs for intensive users, like air 

separation units for industrial gases, have been largely investigated in the literature (Ierapetritou et al., 

2002; Zhu et al., 2010), at least for their operational issues. Thus, several well-established solutions 

and a well-consolidated experience are used to optimize the operations and to dictate the best 

operating conditions when a certain demand is assigned (Manenti, 2009; Westerlund et al., 2011). The 

present work is aimed at exploiting the potentialities of the existing solution by introducing a strategic 

coordinator that manages online the overall superstructure of the distribution system. This work 

proposes a novel approach to manage the operations of distribution, which is based on the 

implementation of a mixed-integer optimizer that allows the user to promptly have the configuration that 

minimize the energy consumption with a noticeable increase in profit. Moreover, the optimizer allows 

matching the significant discontinuities of the industrial gas demand, without any energy dissipation. To 

make the solution very performing, the simultaneous re-organization of the Jacobian’s structure of the 

resulting systems, which significantly changes for the Boolean nature of certain variables, specific 

numerical methods are implemented (Buzzi-Ferraris, 2011a; Buzzi-Ferraris and Manenti, 2010; Buzzi-

Ferraris, 2011b). 

2. Plant description 

The network presented in this paper is an existing gas nitrogen (GAN) distribution network linking a gas 

nitrogen production site and a liquid nitrogen production site (two different air separation units) to the 

high capacity Thyssen-Krupp’s steel mill placed in Terni, Italy. As it is possible to see in Figure 1, the 

network consists of several compressors and lines and it is able to supply GAN to the steel mill at three 

different pressure values: 

 a low pressure GAN (LPGAN) at 6 bar 

 a medium pressure GAN (MPGAN) at 17 bar 

 and a high pressure GAN (HPGAN) at 30 bar 

 

Figure 1: Simplified PFD of the GAN distribution network at the Terni plant 

The GAN is introduced into the network from two different sources: the so-called OSS2 ASU, 

producing both liquid and gas nitrogen, and the OSS3 ASU, entirely dedicated to the production of 

GAN. The two gas lines coming from the plants are collected in a mixer. The network is composed of 

20 different lines and 7 compressors. 5 compressors (RC7, RC8, RC3C, SWC4, RC6) are 

reciprocating multistage type, whereas the remaining 2 compressors are centrifugal type (C1761, 

CC7331). Every compressor has its own operative curve except for RC7 and RC3C that have the 

same curve and a particular control system that allows operating the compressor energy saving also at 

low flow rates (HYDROCOMM®); every curve have been linearized. Compressors RC7, RC8, RC3C, 

and RC6B produce HPGAN; compressors C1761 and SWC4 produce LPGAN; and the compressor 

CC7331 is the only one that produces MPGAN. Furthermore, there is the possibility to gasify the liquid 
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nitrogen produced by the OSS2 ASU in LPGAN and HPGAN and there are also two lines (no. 2 and 7 

of Figure 1) where a lamination valve allows producing LPGAN and MPGAN, respectively, from the 

HPGAN lines. 

3. Model description and mathematical programming 

The study and optimization of the GAN distribution network involves both continuous and discrete 

variables. The former variables are, for instance, the flow rates of the nitrogen supplied to the steel mill 

or the pressure within each stream, whereas the discrete variables are mainly the on/off conditions of 

the compressors of the GAN distribution network, which are the result of the optimization and thus the 

support to the decision making process for energy saving purposes. Also, the large dimension of the 

resulting system is due to the mixed-Boolean nature of the problem and the uncertainty affect the 

mathematical programming since the steel mill requirements cannot be predicted (steel mill casting). 

To model the GAN distribution network of the Section 2, the compressor curves are linearized. The 

resulting matrix 
12 20R M characterizing the GAN distribution system is a largely-sparse, 

unstructured, and under-dimensioned matrix. 

The resulting problem is a mixed-integer linear programming problem (MILP) (Bonami et al., 2008; 

Biegler and Grossmann, 2004; Grossmann and Furman, 2008).The objective function to minimize is 

the total energy consumption for distribution: 
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where x  and b  are the continuous and discrete variables, respectively; NC is the number of 

compressors; LL is the number of streams of the gasified liquids from the OSS2 ASU; f and g  

represent the linear equality and inequality constraints, respectively, for the model of the GAN 

distribution network. 

The optimizer can exclude one or more compressor from the optimization, setting it in maintenance 

mode  0ib   in accordance with the different sets of energy costs, gasification costs, nitrogen 

requirements. Nevertheless, there are several problems to be faced. First of all the matrix is 

rectangular and it may lose its singularity for certain combinations of Boolean variables; this aspect 

must be considered in a tool for online optimization. Moreover, the solution must be particularly 

performing since, as mentioned above, the steel mill requests are unpredictable and whenever a 

change happens, the optimal distribution must be detected and the energy saving policy must be 

promptly implemented. There is the possibility to transform the current system into a more appealing 

system from the numerical point of view. Using the real-integer matrix decomposition, it is possible to 

separate the discrete nature from the continuous one. Decomposing the matrix M , we can distinguish 

two matrices: 

     1,..., 1,...,

,Re
i n j m

i ja R
  

    A M   (3) 

which is the real part of M  (no Boolean variables), and: 

   
   1,..., 1,...,

,Bo 0;1
i n j m

i jb
  

    B M   (4) 

which is the Boolean part of M  (mixed variables). The continuous portion A  can be made symmetric 

by multiplying it with its transpose matrix. Unfortunately, such an operation increases the filling degree 

of the resulting matrix and leads to certain losses in the number of significant digits, but allows 

exploiting the so-called Cuthill-McKee algorithm (Cuthill and McKee, 1969), which is useful for 

symmetric matrices only, to diagonalize the resulting system and, thus, to remove automatically the 

possible matrix singularities and to significantly speed the calculations up as well. Let us proceed by 

steps. 
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The system ABx c  to be solved must have the coefficient matrix symmetric to apply the Cuthill-

McKee algorithm. Therefore, the following system can be considered: 
T TA ABx A c   (5) 

Although the transpose operation of a matrix reduces the number of significant digits, it is possible to 

perform such an operation by preserving a relevant piece of information (Buzzi-Ferraris and Manenti, 

2010). Denoting by 
Tm mR  S A A , it results in: 

TSBx A c   (6) 

   
T T

SB SBx ASB c   (7) 

and with    
T

R SB SB , we obtain: 

 
T

Rx ASB c   (8) 

It means that we can perform in advance a single factorization of the overall system and, exploiting it, 

we are able to solve instantaneously all the possible requests of the steel mill (variations in the vector 

c  only) without any additional matrix computation and preserving the non-singularity of the coefficient 

matrix R . It results in a strong robustness of the solver as well as in very high performances, which 

ensure the proper optimal operational structure of the GAN distribution network in real time, whenever 

the unpredictable requests of the steel mills change. 

The very high efficiency of the proposed solution method allows solving quickly also the resulting MILP 

problem discussed in this paper simply solving all the possible Boolean combination (
NC2 ) and 

comparing the value obtained for the objective function; in this way a very robust resolution is ensured. 

4. Results 

Table 1 shows the optimization results of 10 scenarios that may occur: 

 Scenarios 1, 2, 3: the optimizer is free to choose the combination that best fit the requests with 

all compressors working. In case 1, we have a usual request of all the three products from the 

steel mill and the right choice is using only one of the three alternative compressors at the 

minimum power possible. When the requests of HPGAN and MPGAN increase also a second 

alternative compressor is in “on-mode” (RC7) and the RC6 is switched off. In Scenario 3 the 

HPGAN’s request is zero and the optimizer decides to use RC3C to produce HPGAN to be 

laminated to MPGAN (see L2). 

 Scenario 4: alternative compressors for producing HPGAN (RC7, RC8, RC3C) are under 

maintenance and so the optimizer imposes to gasify liquids to produce HPGAN. 

 Scenario 5 present a situation where compressors CC7331 for 17 bars and RC6 are not working 

and the tool suggests to pump up the production of 30 bars and then use the lamination valve 2 

to produce MPGAN. 

 Scenario 6: compressors CC7331, RC3C and RC8 cannot work. 

 Scenario 7: the only compressors working are RC7 and RC3C and so the optimizer imposes 

both to gasify liquids to produce the right amount of LPGAN and to use lamination valve 2. 

 Scenario 8: the main compressor, C1761 (always used before), is unable to work pushing usage 

of RC7 and RC3C and RC6 to the max and imposing to open both valves 2 and 7 to produce 

MPGAN and LPGAN. 

 Scenario 9: alternative compressors RC7 and RC3C are not working and so the optimizer has to 

use RC8 to produce HPGAN which is the one that consume the biggest amount of energy in 

relationship to the flow. 

 Scenario 10 presents a situation where OSS2 is not able to produce gaseous products and 

OSS3 has a limited production. It is possible to observe that the amount of liquid to be gasified 

is really high. 
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Table 1: Comparison between 10 different scenarios: HPGAN, MPGAN, LPGAN are the requests 

[Nm
3
] from the steel mill; RC7,RC8, RC3C, C1761, SWC4, RC6, CC7331 are the powers of 

compressors in kW, LIQ30, LIQ6 are the liquid gasified producing 30 or 6 bar GAN, Line 2 (L2) and  

Line7 (L7) are the volumetric flow rates passing through the lamination valves [Nm
3
]. 

# LPGAN MPGAN HPGAN RC7 RC8 RC3C C1761 SWC4 RC6 CC7331 LIQ30 LIQ6 L2 L7 

1 500 3500 3500 0 0 650 785 0 220 201 0 0 0 0 

2 500 6000 6000 900  816 734 0 0 227 0 0 1500 0 

3 800 8000 0 0 0 650 828 0 220 227 0 0 3500 0 

4 500 3500 4500 0 0 0 785 0 220 201 2000 0 0 0 

5 500 3500 4500 900 0 900 582 0 0 0 0 0 3500 0 

6 500 3500 4500 900 0 0 666 0 220 0 1500 0 3500 0 

7 500 3500 4500 900 0 900 0 0 0 0 0 500 3500 0 

8 500 3500 6000 900 0 900 0 750 0 188 0 0 500 1500 

9 500 3500 6000 0 900 0 785 0 220 201 0 0 0 0 

10 500 3500 6000 0 0 0 768 0 220 201 4000 0 0 0 

 

The optimizer is able to handle every possible situation, providing the combination that minimizes the 

energy consumption of the whole network and allows prompt response also under the worst situation, 

as in scenario 10, and under uncommon requests from the tonnage user. The solution for Scenario 1 is 

reported in Figure 2. 

 

Figure 2: Plant configuration for scenario 1, the highlighted black lines are in use. 

5. Conclusions 

The paper shows the tangible benefits for the network management and provides to the user a 

responsive solution to promptly have the configuration that minimize the energy consumption with a 

noticeable increase in profit. Moreover, the optimizer allows tackling with the significant discontinuities 

of the industrial gas demand, limiting any energy dissipation. 

The results show that the tool here presented may play an important and fundamental role not only for 

the scope already mentioned but also in a design phase where all the possible operating optimal 

conditions should be studied to address an optimal investment. 
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