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Inter-plant heat integration across a large site can be achieved using a Heat Recovery Loop (HRL). In 

this paper the relationship between HRL storage temperatures, heating and cooling utility savings (heat 

recovery) and total HRL exchanger area is investigated. A methodology for designing a HRL based on 

a ΔTmin approach is compared to three global optimisation approaches where heat exchangers are 

constrained to have either the same Number of Heat Transfer Units (NTU), Log-Mean Temperature 

Difference (LMTD) or no constraints (actual global optimum). Analysis is performed using time 

averaged flow rate and temperature data. Attention is given to understanding the actual temperature 

driving force of the HRL heat exchangers compared to the apparent driving force as indicated by the 

composite curves. The cold storage temperature is also varied to minimise the total heat exchanger 

area. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising 

total area to within 5 % of the unconstrained global optimisation approach. The study also 

demonstrates the efficiency of the ΔTmin approach to HRL design compared to the other methods which 

require considerable computational resources. 

1. Introduction 

Optimising the integration of large industrial sites with many individual plants operating in a non- and 

semi-continuous manner is a challenging undertaking. Individual plants are first integrated within 

common operating zones using direct integration methods. Excess heat sources from below a plant’s 

pinch are exported to another plant on the site with a lower pinch temperature with excess sinks. 

Where plant pinch temperatures are relatively high (>100 °C) waste heat can be used to raise steam 

and to indirectly transfer heat around the site using a steam belt, which may be connected to the 

overall site utility system. Where plant pinch temperatures are very low (<50 °C), as in many food and 

beverage factories, it is uneconomic to raise steam and an alternate approach is to heat liquid water 

and transport heat around the site using a Heat Recovery Loop (HRL) as illustrated in Figure 1. 

Selecting the HRL temperatures is important for maximising the heating and cooling utility savings at 

different times of year (Atkins et al., 2010). Thermal storage, in the form of either multiple tanks or a hot 

and cold stratified tank, is also needed to facilitate HRL operation and to improve heat recovery in the 

face of plant disruptions and stream variability (Atkins et al., 2012). Minimising the amount of extra heat 

exchanger area required for the HRL is another important economic consideration that needs to be 

evaluated when selecting the HRL storage temperatures and the loop heat capacity flow rate. 

In this paper four methods for evaluating HRL heat exchanger area are tested using a six stream 

example. The relationships between HRL storage temperatures, heating and cooling utility savings 
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(heat recovery) and total HRL exchanger area for different area distributions are established. A 

spreadsheet tool based on an area minimisation methodology is used. The tool can be used to 

evaluate a HRL in the design stage to ensure that heat recovery is maximised at minimum HRL 

network area.  

1.1 Heat recovery loop and indirect heat integration 

Heat recovery loops have been considered as a viable indirect heat recovery strategy for batch 

processes and multi-plant sites for many years (Rodera and Bagajewicz, 1999; Bagajewicz and 

Rodera, 2000, 2002). Insight based methodologies for selecting the storage temperatures and 

intermediate fluid flow rates have been developed (Krummenacher and Favrat, 2001). Mixed Integer 

Linear Programming (MILP) has been applied to improve the integration of batch processes by 

attempting to optimize the scheduling and Heat Exchanger Network (HEN) design (Chen and Ciou, 

2008, 2009). Rigorous optimisation of HRL storage temperatures and heat exchanger total areas, 

however, is yet to be applied to indirect heat recovery in multi-plant sites across independent semi-

continuous processes. The work reported in this paper as an attempt to address this need. 

 

 

Figure 1: Large multi-plant site and associated Heat Recovery Loop grid diagram 

2. Process stream data 

Table 1:  Inter-plant process stream data 

Stream 
Ts 

[°C] 

Tt 

[°C] 

CP 

[kW/°C] 

Q 

[kW] 

H1 43 6 7.1 263 

H2 70 10 3.5 210 

H3 56 18 4.6 175 

C1 10 40 5.1 153 

C2 12 75 2.3 145 

C3 16 55 11.8 460 

 

 

Figure 2:Inter-plant process Composite Curves 
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The process stream data created to represent streams available for inter-plant indirect heat transfer on 

a HRL is presented in Table 1. Composite curves show the non-integrated maximum hot and cold 

utility targets and the locations along the composite curves where streams are supplied in Figure 2. It is 

assumed that the streams come from processes that act in a semi-continuous manner and that the 

distance between streams is prohibitive, such that direct integration of the process stream is not 

possible. The overall heat transfer coefficient, U, of the all exchangers is assumed to be 1 kWm
-2

°C
-1

. 

3. Methodology 

Selection of the optimal storage temperatures and heat exchanger areas are important decisions in 

HRL design. The methods developed to achieve these objectives are presented in this section. 

3.1 Insight based ΔTmin approach 
The first method is an extension of traditional pinch analysis using an insight based ΔTmin approach. 

The composite curves of the available HRL streams are plotted and shifted together until the HRL 

ΔTmin criterion is met (Figure 3). A line is drawn to represents the HRL between the hot and cold 

composites of the overlapping region or HRL zone. The two end points represent the feasible 

temperatures for a two tank HRL system. The slope of this line is the average loop heat capacity flow 

rate. Pinch points are caused by limiting hot (source) or cold (sink) stream supply temperatures that are 

within the heat recovery zone and the opposite composite curve (a distance of twice the ΔTmin). This 

applies for Th in Figure 3 where the midpoint of the pinch defines the hot storage temperature for 

maximum energy recovery. 
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Figure 3: Maximum heat recovery using a ΔTmin approach to targeting a HRL; ΔTmin = 5 °C, Th = 38 °C 

and Tc = 21 ≤ Tc ≤ 24 °C 

In the case of Figure 3, at the opposite end of the HRL line a range of cold storage temperatures, Tc, 

exists that still give maximum recovery. The range is constrained by the cold stream C3 supply 

temperature and the hot composite curve. Points A and B on the composite curves define the required 

outlet temperature of the process streams for vertical integration and can be used to determine the 

minimum temperature driving force for heat exchange design. The selection of the cold storage 

temperature, Tc, provides a degree of freedom that can be used to minimize the total exchanger area. 
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In other situations the HRL line pinch could be at Tc and the hot storage temperature Th is free to be 

optimized over a small temperature range. 

Several important design features can be derived from the composite curve; (1) it identifies which 

streams need to be attached to the HRL, (2) it provides definitive information on the storage 

temperatures required for achieving maximum heat recovery, (3) it contains the minimum exchanger 

process stream outlet temperatures required to produce a long-term balanced system (assuming 

storage capacity is not an issue), and (4) it targets the average utility consumption. ΔTmin can also be 

varied and the effect on maximum heat recovery, minimum heat exchanger total area and storage 

temperatures can be evaluated and eventually optimized for minimum cost (which is outside the scope 

of this paper). In this paper, ΔTmin is varied between 2 – 10 °C and HRL designs, including heat 

recovery targets (170 – 480 kW), storage temperatures, loop flow rate and heat exchanger areas, are 

derived from the composite curve.  

3.2 Non-linear programming based approach 

The second method uses an Excel
TM

 spreadsheet based non-linear programming technique to find the 

minimum heat exchanger area and corresponding storage temperatures for a HRL network. The 

standard non-linear Solver
TM

 that comes with Excel
TM

 2010 is used. The HRL storage temperatures 

and the heat exchanger area are identified as variables with the optimization goal of minimizing the 

total network area. Logical constraints may then be applied to a specific heat recovery amount and 

bounds are placed on the search space of the hot and cold storage temperatures. The solver then 

searches for feasible solutions and determines what is likely to be the global minimum area for the 

given constraints.  

The spreadsheet tool was applied in three ways: (1) all heat exchangers are constrained to have the 

same Number of Heat Transfer Units (NTU), (2) all heat exchangers have the same Log-Mean 

Temperature Difference (LMTD), and (3) the area of each heat exchanger is changed independently. 

The first two constraints are applied to significantly reduce the search space of the solver and to 

investigate whether or not a different approach to designing a HRL can yield significant benefit by more 

optimal distribution of area. The third option identifies the global best case for all heat recovery target 

levels. This provides a reference point for comparing the other three cases studied. A range of heat 

recovery targets from 170 to 480 kW were modeled for all cases. 

4. Results and discussion 

4.1 Applying the ΔTmin method to storage temperature selection 

The composite curve in Figure 3 contains sufficient information to identify the maximum heat recovery 

potential, the required hot and cold storage temperatures and the thermal design requirement of the 

heat exchangers attached to the HRL, for a ΔTmin of 5 °C. As previously explained, Figure 3 was 

obtained by shifting the composite curves in Figure 2 together until a storage pinch occurred at the hot 

storage temperature, Th. Stream H1 supplied at 43 °C is a ΔTmin of 5 °C above Th at 38 °C. If this ΔTmin 

was to be violated then stream H1 would need to be removed from the HRL and the composite curves 

re-drawn and re-shifted. For the two tank HRL system, therefore, the maximum average heat recovery 

potential is 366 kW.  

Other heat recovery targets can be obtained by changing ΔTmin and, therefore, the heat exchanger total 

area (Figure 4a). With decreasing ΔTmin towards 0 °C the maximum heat recovery occurs is 543 kW. 

This represents the thermodynamic limit for the stream data using indirect heat exchange with two 

tanks and infinite heat exchanger area, which is clearly is not economic. 

4.2 Heat exchange temperature driving force 
The temperature driving forces of the actual heat exchangers on the HRL network are not the same as 

apparent temperature driving forces determined from the composite curves in Figure 3. This difference 

is illustrated in Figure 4b. Actual driving forces are taken from the temperature difference between the 

process stream inlet and HRL fluid outlet. The apparent temperature driving force is the difference in 

temperature between the composite curve and the HRL line, for the same ΔH value. Redistributing 

heat exchanger area to better balance temperature driving force may be advantageous in some cases. 
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However, for this set of stream data the difference is minor, and actual driving forces are similar to the 

apparent. 
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Figure 4: (a) Heat recovery versus heat exchanger total area. (b) A comparison of the apparent 

(composite curve derived) and actual temperature driving forces for individual Heat Exchangers (HE) in 

the HRL 

4.3 Area distribution in the HRL network 
For a ΔTmin of 5 °C and a HRL with two storage tanks, the maximum heat recovery is achievable when 

Th is 38 °C and Tc is between 21 and 24 °C (Figure 3). In this case the designer has a degree of 

freedom in Tc that may be applied to optimize the exchanger area without any heat recovery penalty. 

Figure 5a shows the network area minimization that results from varying Tc. The best cold storage 

temperature is, therefore, 23.5 °C. The location of the cost optimum may be different to the area 

minimum due to the inclusion of storage capacity. Residence time and the amount of thermal storage 

are directly proportional to the temperature difference between the hot and cold storage temperatures. 

At times it may be beneficial to lower Tc to reduce the size of the storage and pay the penalty in 

needing more area. 
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Figure 5: (a) Minimum network area for selection of the cold storage temperature, Tc.(b) Additional area 

targeted using the ΔTmin, NTU and LMTD targeting based methods reference to the global minimum 

area for a given level of heat recovery 
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Chapter 2 The unconstrained global optimisation method provides the lowest heat exchanger area 

options for a given heat recovery target. However, the performance of the insight based ΔTmin method 

is impressive, being superior to the LMTD method and similar to the NTU method (Figure 5b). On 

average the relative simple ΔTmin method gets to within 5 % of the global optimisation approach. The 

three non-linear programming techniques require much greater familiarity with computing techniques 

and may be taxing on computing resources and time especially when larger problems are to be solve. 

The NTU and LMTD approaches provide no substantial benefit to minimizing area. 

Chapter 3  

1. Conclusion 

An insight based methodology for designing HRLs using composite curves and the ΔTmin approach has 

been shown to be comparable to using a global optimisation approach with NTU constraint and 

superior to using a LMTD constraint. The unconstrained global optimisation approach leads to the 

lowest area solutions but the method may have computational resource limitations for more complex 

problems. The actual temperature driving forces in HRL exchangers can differ compared to the 

apparent driving force predicted from the composite curves. Optimising the selection of the storage 

temperatures, either hot or cold depending on the situation, is also worthwhile and can result in either 

reduction of total heat exchanger area or increase heat recovery for the same area. The amount of 

reduction is again dependent on the specific stream data being considered for the HRL.  

References 

Atkins M.J., Walmsley M.R.W., Neale J.R., 2010, The challenge of integrating non-continuous 
processes – milk powder plant case study. Journal of Cleaner Production, 18, 927-934. 

Atkins M.J., Walmsley M.R.W., Neale J.R., 2012, Process integration between individual plants at a 
large dairy factory by the application of heat recovery loops and transient stream analysis. Journal 
of Cleaner Production, 34, 21-28. 

Bagajewicz M., Rodera H., 2000,  Energy savings in the total site heat integration across many plants. 
Computers & Chemical Engineering, 24, 1237-1242. 

Bagajewicz M., Rodera H., 2002. Multiple plant heat integration in a total site. AIChE Journal, 48, 2255-
2270. 

Chen C.L., Ciou Y.J., 2008, Design and Optimization of Indirect Energy Storage Systems for Batch 
Process Plants. Ind. Eng. Chem. Res., 47, 4817–4829. 

Chen C.L., Ciou Y.J., 2009, Design of Indirect Heat Recovery Systems with Variable-Temperature 
Storage for Batch Plants. Ind. Eng. Chem. Res., 48, 4375–4387. 

Krummenacher P., Favrat D., 2001, Indirect and mixed direct-indirect heat integration of batch 
processes based on Pinch Analysis. International Journal of Thermodynamics, 4, 135–143. 

Rodera H., Bagajewicz M.J., 1999, Targeting procedures for energy savings by heat integration across 
plants. AIChE Journal, 45, 1721-1742. 


