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This paper presents a novel optimization method of addressing fouling effects in heat exchanger 

network (HEN) retrofit with intensified heat transfer. In the new approach, the fouling deposition in each 

heat exchanger is taken into account when heat transfer intensification is regarded as a retrofit option 

in HENs, and the optimization procedure proposed by Pan et al. (2012b) is developed to solve the 

addressed problems efficiently. A practical industrial process is carried out to show that with the 

consideration of fouling influence. The benefit that can be derived from implementing intensified 

technologies is not only increasing heat recovery but also extending exchanger operating times with 

the mitigation of fouling deposition. 

1. Introduction 

A number of retrofit approaches have been reported for retrofitting heat exchanger network (HEN) in 

the last few decades. The existing approaches include implementing intensified heat transfer 

techniques, adding more exchanger area, installing new exchangers, moving exchangers and repiping 

streams (Ponce-Ortega et al., 2008; Nguyen et al., 2010; Pan et al., 2012a, 2012b). However, these 

conventional approaches are proposed based on the assumption of constant fouling resistances in 

exchangers during the whole operating period, which might suffer from the chronic operational problem 

caused by fouling, and thus compromises energy recovery and environmental welfare in the retrofitted 

HENs.  

Fouling concerns the formation of unwanted material on heat transfer surfaces. Fouling problems 

manifest themselves as loss or reduction in production, increased energy consumption, increased 

pressure losses, antifouling chemical costs, cleaning costs, and so on. To reduce fouling effects in 

HENs, most researchers tried to increase exchanger area or modify operating conditions in the existing 

HENs. Brodowicz and Markowski (2003) proposed several control methods to increase exchanger area 

or increase the capacities of heaters and coolers. Rodriguez and Smith (2007) optimized the operating 

conditions (such as wall temperature and flow velocity) to mitigate fouling in HENs. Coletti et al. (2010) 

used a dynamic and distributed mathematical model for shell-and-tube heat exchangers undergoing 

crude oil fouling to simulate the existing HENs. Recently, Yang et al. (2011) found that, fouling of the 

heat exchanger depends on two major operational parameters, namely the wall shear stress and the 

surface temperature. The use of tube inserts (one type of enhancement techniques) has been shown 

to be effective in mitigating crude oil fouling whilst enhancing heat transfer at the same time, as there 

will be axial and radial distributions of local shear stress in tube side with the introduction of inserts 

(Ritchie and Droegemueller, 2008; Krueger and Pouponnot, 2009). Thus, in this paper, the fouling 

model of tube inserts proposed by Yang et al. (2009) is adopted, and afterward combined in the 

optimization approach of HEN retrofit proposed by Pan et al. (2012b). Finally, an industrial study is 
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presented to demonstrate the validity and efficiency of the enhancement techniques in HEN retrofit 

scenarios. 

2. Fouling deposition in tube side 

Based on the work presented by Yang et al. (2009), fouling on a heat exchanger surface can be 

described as two steps. In the first step (induction period), the active fouling species adhere to the heat 

transfer surface and gradually cover it from a fractional coverage of θ = 0 to total coverage at θmax. This 

pre-conditioning layer is very thin, where the increase in fouling resistance Rf can be negligible, thus, 

changes in surface roughness are ignored. In the second step (fouling period), the fouling layer may 

start to grow immediately on the covered/pre-conditioned surface when it may be assumed that the 

growth rate is proportional to θ. The overall rate of fouling resistance growth can therefore be 

expressed as: 

f
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where, R’f is the form of established fouling rate expression, and the simple threshold model (Polley et 

al., 2007) is utilized in this paper: 
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In Equations (2) and (3), α and γ are constants, Re and Ree are Reynolds numbers before and after 

the implementation of tube inserts, Pr is Prandlt number, E is activation energy, R is universal gas 

constant, and Tw is tube wall temperature. 

Yang et al. (2009) also proposed second order growth rate (θg) and one order removal rate (θr) on 

fractional surface coverage (θ). Equation (4) describes that in the early stage of surface pre-

conditioning, active species can be captured and adhered to the surface; meanwhile, the particles that 

stick to the surface act as seeds, attracting more foulant around them, such that fouling proceeds in a 

micro-growth manner. 
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Based on the concept of removal or release from the surface as in adsorption science, the removal rate 

(θr) of the surface coverage is assumed to be proportional to the surface coverage, as shown in 

Equation (5). 




2k
dt

d r     (5) 

Thus, the net growth rate of θ is obtained with combining Equations (4) and (5): 
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Integrating Equation (7) gives the fractional surface coverage (θ): 
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where c is constant, t presents time, k1 and k2 are lumped growth rate and removal rate constants. 
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In Equations (8) and (9), Ai and r are constants, Tw is tube wall temperature, R is universal gas 

constant, E is activation energy, and u is flow velocity. 

Compared with the induction time (when the growth of θ reaches its maximum at 0.5θmax), the fouling 

time is much longer (normally several months vs. several days). Thus, the induction time may be 

negligible in the whole operational period, and the overall rate of fouling resistance growth in Equation 

(1) can be simplified as: 

fmax

f
R

dt

dR
   (10) 

According to Equation (7), θmax is given by: 
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The fouling resistance at t operational time can be estimated based on the integration of Equation (10): 

tRR fmaxf 
 (12) 

The procedure of HEN retrofit addressed in this paper is to change the heat transfer coefficients of heat 

exchangers in tube side by implementing tube inserts under constant heat transfer area, which 

provides energy saving without any topology modifications. In addition, heat transfer area, stream 

flowrates and heat capacities in each exchanger maintain constant during HEN retrofit. Therefore, the 

fouling resistance formulations can be combined in the optimization approach proposed by Pan et al. 

(2012b) for HEN retrofit, and only two types of nonlinear terms are generated in the proposed model, 

namely, logarithmic mean temperature difference (LMTD) and fouling resistance (Rf). 

Most importantly, this paper considers more details for calculating overall heat transfer coefficient (U) 

rather than simply calculation of U in the previous work (Pan et al., 2012b): 
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where DTUDex, DSUDex and DUDex are the reciprocal values of tube-side, shell-side and overall 

designed heat transfer coefficients for exchanger ex, ADex and Aex are designed and required area of 

exchanger ex, ODex and IDex are outer and inner tube diameters of exchanger ex, ktube is tube 

conductivity, TRFex and SRFex are tube side and shell side fouling resistances. 

To resolve the computational difficulties related to those nonlinear terms, the iterative procedures 

developed by Pan et al. (2012b) are utilized to find the optimal solutions of implementing tube inserts in 

HEN retrofit with fouling consideration. 

3.  Case study 

A HEN of existing preheat train for a crude oil distillation column in a refinery plant is carried out to 

evaluate the proposed optimization approach. As shown in Figure 1, the retrofit objective is to reduce 

the hot utility (HU) consumption, namely, reduce the heat duty of heat exchanger 30 (target 

exchanger). The stream data and initial exchanger data can be found in Tables 1 and 2. Moreover, the 

heat-flow capacities of hot utility and cold utility are 93 kW/ ºC and 9652.5 kW/ ºC, the inlet 

temperatures of hot utility and cold utility are 1500 ºC and 12.45 ºC, the minimum temperature 
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difference approaches (∆Tmin) before and after heat transfer intensification are 19 ºC and 5 ºC, and the 

minimum operating time of exchanger in the original HEN is 3.1 months (exchanger 28). 

 

 

Figure 1: A HEN for the case study 

Table 1:  Stream details in case study 

Stream C1 C2 C3 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 

FCP  

(kW/ ºC) 
323 358.5 474 14.2 181.5 113 100 22.2 39.5 28.0 176 24.5 25.0 69.6 

Tin (ºC) 33.5 91.34 151 335 253.2 294 212 213 174 364 290 284 240 179 

Tout (ºC) 95.6 157.3 352 69.4 116.1 130 156 61.7 43.3 65.6 211 65.6 57.8 69.3 

Table 2:  Exchanger details in original HEN 

EXs 
hi (kW/m

2
· ºC) h0 (kW/m

2
· ºC) U (kW/m

2
· ºC) Area (m

2
) Operating 

Time 

(month) Designed Required Designed Required Designed Required Designed Required 

1 0.263 0.263 0.375 0.375 0.125 0.125 192.5 175.0 9.4 

2 0.208 0.208 0.304 0.304 0.101 0.101 12.8 11.7 7.1 

3 0.521 0.521 0.671 0.671 0.224 0.224 256.7 233.3 11.9 

4 0.703 0.703 0.847 0.847 0.282 0.282 192.5 175.0 3.5 

5 0.453 0.453 0.898 0.898 0.224 0.224 220.0 200.0 5.4 

6 0.479 0.479 0.627 0.627 0.209 0.209 715.0 650.0 5.2 

7 0.211 0.211 0.307 0.307 0.102 0.102 22.0 20.0 8.8 

8 0.893 0.893 1.008 1.008 0.336 0.336 33.0 30.0 5.7 

9 0.903 0.903 1.017 1.017 0.339 0.339 61.1 55.6 4.5 

10 0.235 0.235 0.339 0.339 0.113 0.113 305.6 277.8 15.3 

11 0.832 0.832 0.959 0.959 0.320 0.320 61.1 55.6 9.6 

12 0.204 0.204 0.298 0.298 0.099 0.099 244.5 222.2 7.2 

13 0.411 0.411 0.552 0.552 0.184 0.184 141.4 128.6 12.7 

14 0.786 0.786 0.920 0.920 0.307 0.307 94.3 85.7 6.0 

15 0.392 0.392 0.530 0.530 0.177 0.177 47.1 42.9 8.0 

16 0.927 0.927 1.035 1.035 0.345 0.345 471.5 428.6 7.9 

17 0.422 0.422 0.564 0.564 0.188 0.188 228.5 207.7 9.9 

18 0.275 0.275 0.390 0.390 0.130 0.130 228.5 207.7 12.1 
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Table 2: Exchanger details in original HEN (Continued) 

19 0.340 0.340 0.469 0.469 0.156 0.156 152.3 138.5 13.2 

20 0.663 0.663 0.810 0.810 0.270 0.270 1523.1 1384.6 5.4 

21 0.504 0.504 0.653 0.653 0.218 0.218 76.2 69.2 4.9 

22 0.658 0.658 0.805 0.805 0.268 0.268 114.2 103.8 3.6 

23 0.736 0.736 0.876 0.876 0.292 0.292 152.3 138.5 4.7 

24 0.308 0.308 0.431 0.431 0.144 0.144 1142.3 1038.5 3.4 

25 0.335 0.335 0.463 0.463 0.154 0.154 73.3 66.7 10.0 

26 0.984 0.984 1.079 1.079 0.360 0.360 733.3 666.6 4.3 

27 0.239 0.239 0.344 0.344 0.115 0.115 256.6 233.3 4.3 

28 0.881 0.881 0.998 0.998 0.333 0.333 1122.0 1020.0 3.1 

29 0.556 0.556 0.706 0.706 0.235 0.235 264.0 240.0 4.2 

30 0.910 0.910 1.022 1.022 0.341 0.341 198.0 180.0 15.7 

31 0.290 0.290 0.408 0.408 0.136 0.136 330.0 300.0 5.3 

Table 3:  Exchanger details in retrofitted HEN 

EXs 
hi (kW/m

2
· ºC) h0 (kW/m

2
· ºC) U (kW/m

2
· ºC) Area (m

2
) Operating 

Time 

(month) Designed Required Designed Required Designed Required Designed Required 

1 0.263 0.253 0.375 0.375 0.125 0.122 192.5 175.0 12.0 

2 0.208 0.124 0.304 0.304 0.101 0.071 12.8 11.7 40.1 

3 0.521 0.521 0.671 0.671 0.224 0.224 256.7 233.3 11.9 

4 0.703 0.561 0.847 0.847 0.282 0.251 192.5 175.0 8.0 

5  0.455 0.452 0.898 0.898 0.225 0.224 220.0 200.0 9.2 

6 0.588 0.555 0.627 0.627 0.232 0.226 715.0 650.0 9.3 

7 0.211 0.214 0.307 0.307 0.102 0.103 22.0 20.0 8.0 

8 1.227 1.155 1.008 1.008 0.386 0.376 33.0 30.0 8.2 

9 0.903 0.789 1.017 1.017 0.339 0.317 61.1 55.6 8.0 

10 0.236 0.219 0.339 0.339 0.113 0.108 305.6 277.8 25.3 

11 0.832 0.634 0.959 0.959 0.320 0.278 61.1 55.6 26.3 

12 0.204 0.194 0.298 0.298 0.099 0.096 244.5 222.2 10.4 

13 0.452 0.445 0.552 0.552 0.194 0.192 141.4 128.6 21.5 

14 0.786 0.733 0.920 0.920 0.307 0.296 94.3 85.7 8.8 

15 0.392 0.304 0.530 0.530 0.177 0.152 47.1 42.9 24.4 

16 1.335 0.858 1.035 1.035 0.402 0.333 471.5 428.6 33.4 

17 0.698 0.593 0.564 0.564 0.241 0.224 228.5 207.7 15.0 

18 1.667 1.376 0.390 0.390 0.257 0.246 228.5 207.7 9.7 

19 0.340 0.282 0.469 0.469 0.156 0.140 152.3 138.5 34.4 

20 3.311 2.356 0.810 0.810 0.456 0.426 1523.1 1384.6 8.0 

21 0.504 0.454 0.653 0.653 0.218 0.205 76.2 69.2 8.0 

22 3.289 1.509 0.805 0.805 0.453 0.377 114.2 103.8 8.0 

23 3.676 1.901 0.876 0.876 0.484 0.420 152.3 138.5 8.0 

24 1.541 0.636 0.431 0.431 0.269 0.205 1142.3 1038.5 8.0 

25 0.335 0.274 0.463 0.463 0.154 0.137 73.3 66.7 24.5 

26 4.926 2.283 1.079 1.079 0.567 0.486 733.3 666.6 8.1 

27 1.193 0.705 0.344 0.344 0.220 0.190 256.6 233.3 8.0 

28 4.405 1.725 0.998 0.998 0.535 0.433 1122.0 1020.0 8.0 

29 2.762 1.263 0.706 0.706 0.408 0.334 264.0 240.0 8.0 

30 0.910 0.785 1.022 1.022 0.341 0.317 198.0 180.0 26.7 

31 0.290 0.149 0.408 0.408 0.136 0.088 330.0 300.0 41.5 

Bold exchanger number presents intensified exchanger.  

 

In case study, tube side fouling deposition and intensification are considered simultaneously to improve 

energy saving in the whole network. In addition, shell side heat transfer coefficient and fouling 

resistance are assumed constant in exchangers during HEN retrofit, as only tube-side intensified 

techniques are considered. From Table 3, it can be noted that to increase the operational time of the 

whole process, the proposed method is utilized to obtain the optimal solutions under the constraint of 

operating times ≥ 8 months. In the retrofit solution, the implementation of tube inserts not only 
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increases the heat transfer coefficients in enhanced exchangers, but also prolongs their operating 

times significantly, which might save substantial capital investment because of potential production 

losses during cleaning process. 

4. Conclusions 

Implementation of intensified heat transfer is an efficient way to increase energy recovery and 

overcome fouling deposition in retrofitting HEN. In order to solve large scale HEN retrofit problems 

efficiently, a new optimization method has been proposed. The proposed design approach is able to 

give realistic and practical solutions for the debottlenecking of HEN as detailed intensified techniques 

are systematically applied. This leads substantial capital saving as no structural modification in heat 

recovery system configuration is considered. The case study shows that, based on the new approach, 

more energy saving is achieved (5.35%) under long operating times (3.1 months to 8 months). 
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