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In this paper, Infinite Impulse Response Locally Recurrent Neural Networks (IIR-LRNNs) are employed 
for forecasting failures and predicting the reliability of engineered components and systems. To the 
authors’ knowledge, it is the first time that such dynamic modelling technique is used in reliability 
prediction tasks. The method is compared to the radial basis function (RBF), the traditional multilayer 
perceptron (MLP) model (i.e., the traditional Artificial Neural Network model) and the Box-Jenkins 
autoregressive-integrated-moving average (ARIMA). The comparison, made on case studies 
concerning engine systems, shows the superiority of the IIR-LRNN with respect to both the RBF and 
the ARIMA models, whereas a similar performance is obtained by the MLP. 

1. Introduction 
Reliability modeling and forecasting have received increasing attention over recent years, due to the 
growing use of reliability indices in engineering decision making. 
Successful reliability prediction generally requires developing a reliability model of the system. Several 
reliability modelling approaches are available depending on the problem (e.g. reliability block diagrams, 
fault tree analysis, state-space methods, failure rate prediction methods (Siewiorek and Swarz, 1982)). 
Although these methods are widely used, they bear some limitations when used for predicting the 
evolution of reliability with time. The limitations derive from the need to make assumptions on the 
failure processes and distributions, which render the reliability models little realistic. 
In general, reliability changes with time and the changes can be treated as a time series. However, the 
complexity and nonlinearity of the process poses strong challenges to the standard time series analysis 
methods. On the other hand, artificial neural networks have received increasing attention in time series 
forecasting, due to their general nonlinear function mapping capabilities: Liu et al. (1995) used neural 
network models to estimate the parameters of a reliability distribution when a small data set is 
available; Su et al. (1997) combined ARIMA models with neural network techniques to predict engine 
reliability; Amjady and Ehsan (1999) proposed a neural-network-based expert system for evaluating 
the reliability of power systems; Cai et al. (2001), Ho et al. (2003), Tian and Noore (2005a and b), Hu et 
al. (2007) used both classical and recurrent neural networks to forecast software reliability. 
Whereas feed-forward neural networks can model only static input/output mappings, the structure of 
recurrent neural networks allows reproducing the behavior of dynamic systems by implementing 
temporal dynamic feedbacks into the widely used multi-layered feed-forward neural network. By adding 
recurrent feedback connections, a multilayer feed-forward network can be provided with system state 
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memory and thus transformed into a recurrent network which is potentially capable of modeling 
dynamic systems and time series (Ho et al., 2002; Xu et al., 2003). 
In this paper, an Infinite Impulse Response Locally Recurrent Neural Network (IIR-LRNN) modeling 
approach (Back and Tsoi, 1991) is proposed for forecasting the reliability and failures of hardware 
components. To the authors’ knowledge, it is the first time that such type of recurrent neural network is 
used for this task. To investigate the IIR-LRNN capabilities in reliability prediction, the predictive 
performance of various time series models including MLP, ARIMA and RBF, are evaluated in 
comparative studies regarding engine failure processes.  

2. Neural networks for time series prediction 
Time series are samples of the behaviour of a process over discrete time values. The prediction of the 
evolution over time of a process implies the prediction of the future values of the time series describing 
the process (Charfield, 1991). 
Time series prediction with classical methods relies on successive steps which include the design of 
the model, its identification and finally the parameters estimation. Let 1 2 1( , , , , )t t tx x x x x  be the time 
series data collected up to time t, in order to build the model. The data are samples of the process 
variable x, taken with a given time step. The prediction of the time series values can be made a single-
step ahead to estimate xt+1 or multi-step ahead to estimate xt+p, p>1. 
The predictive model is then a mapping function of the form: 

1 2( , , , )t t p t p tx f x x x  (1) 

where p is the dimension of the input vector, i.e. the number of past observations in the time series 
which relate to the future value xt, and f is the model function. 
The most difficult processes to predict are (Mandic and Chambers, 2001): i) those with insufficient 
amount of data in the series (for instance chaotic signals); ii) those whose data series are obtained 
through observations and measurements (in this case the data are affected by measurement errors); 
iii) processes whose behaviour varies in time. 
On the contrary, the application of artificial neural networks for time series analysis relies purely on an 
‘automatic training’ procedure of parameters (weights) tuning, based on the data observed. This 
training aims at finding the approximating function f, which is uniquely determined by iteratively 
adjusting the weights of the network. Because multilayer feed-forward networks with at least one 
hidden layer and a sufficient number of hidden units are capable of approximating any measurable 
function (Hornik et al., 1989), an artificial neural network has the capability of representing any form of 
time series, even in the case of noisy and/or missing data. Furthermore, the neural networks ability to 
cope with nonlinearities, their speed of computation, their learning capacity and their accuracy make 
neural networks valuable tools of prediction and give them an advantage over linear models like the 
ARIMA technique (Box and Jenkins, 1976). 
When neural networks are used for time series forecasting, the data series is usually divided into a 
training set and a test set. The training set is used for the construction and training of the neural 
network whereas the test set is used for measuring the predictive ability of the model. 
As already said, classical feed-forward networks are in general capable of representing only static 
input/output mappings and suffer from the drawback of not being able to characterize higher order 
dynamics of a system. For this reason, in order to improve performance, delayed feedback links can be 
designed to obtain recurrent architectures. In this way, the network is capable of storing previous 
knowledge on the input patterns. Hence, these recurrent structures can learn temporal sequences 
better as time evolves (Ho et al., 2003). 

3. The Infinite Impulse Response-Locally Recurrent Neural Network (IIR-LRNN) 
A LRNN is a time-discrete network consisting of a global feed-forward structure of nodes 
interconnected by synapses which link the nodes of the k-th layer to those of the successive (k+1)-th 
layer, k = 0, 1, …, M, layer 0 being the input and M the output. Differently from the classical static feed-
forward networks, in an LRNN each synapse carries taps and feedback connections. In particular, each 
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synapse of an IIR-LRNN contains an IIR linear filter whose characteristic transfer function can be 
expressed as ratio of two polynomials with poles and zeros representing the Auto Regressive (AR) and 
Moving Average (MA) part of the model, respectively. 
During the forward phase, at the generic time t = 1, 2, …, T the generic neuron j  = 1, 2, …, Nk 

belonging to the generic layer k = 1, 2, …, M receives in input the quantity ( )k
jly t  from neuron l = 1, 2, 

…, Nk-1 of layer (k – 1): 
1

1
( ) ( )

0 1
( ) ( ) ( )

k k
jl jlL I

k k k k k
jl jl p l jl p jl

p p
y t w x t p v y t p   (2) 

The quantities ( )k
jly t , l = 1, 2, …, Nk-1, are summed to obtain the net input ( )k

js t  to the nonlinear 

activation function ( )kf , typically a sigmoidal, Fermi function, of the j-th node, j = 1, 2, …, Nk, of the k-
th layer, k = 1, 2, …, M: 

1

0
( ) ( )

kN
k k
j jl

l
s t y t   (3) 

The output of the activation function gives the state of the j-th neuron of the k-th layer, ( )k
jx t : 

( ) ( ) ( 1  for the bias node, 0)k k k
j jx t f s t j   (4) 

For simplicity of illustration, and with no loss of generality, an example of a network constituted by only 
one hidden layer, i.e. M = 2, is depicted in Figure 1. 
Further details about the IIR-LRNN architecture and forward calculation may be found in (Campolucci 
et al., 1999) and (Cadini et al., 2007). 

 

Figure 1. Scheme of an IIR-LRNN with one hidden layer 

The IIR-LRNN is trained with the Recursive Back-Propagation (RBP) training algorithm (Campolucci et 
al., 1999), a gradient-based minimisation algorithm which makes use of a particular chain rule 
expansion for the computation of the necessary derivatives. For brevity, the RBP algorithm is not 
presented in this paper; the interested reader may refer to (Campolucci et al., 1999) and (Cadini et al., 
2007) for details. 
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4. Failure and reliability prediction by IIR-LRNN 
In the following, the dynamic modelling power of IIR-LRNN is challenged with the task of failure and 
reliability prediction. To verify the potential of the technique, two literature case studies concerning 
engine systems are considered and a comparison is made against other traditional and neural 
paradigms of time series modelling. 

4.1 Forecasting the failure time of turbochargers in diesel engines 
Most modern diesel engines are equipped with a turbocharger, for increased power output. Capturing 
the trends of the failure data of this component is of paramount importance for predicting its reliability. 
The data set used in this paper is composed by the failure times observed in 40 turbochargers from a 
set of 100 units of a specific type: see (Xu et al., 2003) for details. 
With reference to the general time series mapping function (1), the observed xt is the time-to-failure Ti, 
whereas the discrete observation time t is the failure order number i. 
Two IIR-LRNNs have been developed. The first one builds a single-step ahead predictive function by 
using the i-th unit time-to-failure as input to predict the (i+1)-th time-to-failure as output. The second 
makes a two-step ahead prediction of the (i+2)-th time-to-failure, using the same input. 
Both IIR-LRNNs are composed of three layers: the input, with two nodes (bias included); the hidden, 
with nine and eight nodes (bias included) for the single- and two-step-ahead predictions, respectively; 
the output with one node. Hence, both networks have a single node for the variable time-to-failure in 
the input layer, which is fed with the lagged observations of the data series. The single node in the 
output layer provides the future values of the time-to-failure series. 
The number of hidden nodes, as well as the number of taps and delays have been chosen 
experimentally to obtain a satisfactory modelling performance of the trained IIR-LRNNs, measured in 
terms of the Normalized Root Mean Square Error (NRMSE) defined as 

txtxtxNRMSE 22 /ˆ , where ˆ( )x t  is the prediction of ( )x t . 

As in (Xu et al., 2003), the data corresponding to the first 35 failures are used to construct the training 
patterns and those corresponding to the last 5 failures as the testing patterns, for a total of 40 patterns. 
The training has been carried out for 6000 iterations; on each iteration, the 35 training patterns are 
reprocessed and the network parameters adjusted so as to reduce the prediction error. 
Figure 2 shows the comparison between the actual and predicted failure times for both single and two-
step ahead IIR-LRNNs respectively. The IIR-LRNNs predictions are in satisfactory agreement with the 
real failure times. 
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Figure 2. Predictive performance of the two IIR-LRNNs. 

The IIR-LRNN predictions have been analyzed further in terms of the component reliability R(Ti) at 
failure time Ti, computed as R(Ti) = 1 – (i – 0.3)/(n + 0.4), where i is the failure order number and n is 
the date sample size (i.e., n = 40) (Xu et al., 2003). The NRMSE values computed on the training and 
test data are found to be 0.0213, 0.0149, respectively, for the single-step-ahead IIR-LRNN and 0.0117 
and 0.0199, respectively, for the two-step-ahead IIR-LRNN; the values confirm that both single- and 
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two-step ahead IIR-LRNNs have good generalization capabilities, the error being less than two percent 
on the five test data. 

4.2 Forecasting km-to-failure for car engines 
In the automotive industry, the reliability performance of car components is often measured in terms of 
usage. In the application considered in the following, the distance covered by a car engine between 
consecutive failures measured in km-between-failures is taken as performance indicator. 
The data set used in this paper is composed by the km-between-failures for 100 units of a specific 
brand of car engine: see (Xu et al., 2003) for details. 
These data can be treated as a time-series in which the observed quantity x(t) is the km-between-
failures and the time t is the number i of the failure. The objective is to forecast the remaining km-
between-failures based on past failure observations. 
One IIR-LRNN has been trained for the single-step ahead prediction. Hence, one pattern is given by 
the km-between-failures at failure number i, as input, and the corresponding value at failure number 
i+1. The IIR-LRNN has three layers: the input, with two nodes (bias included); the hidden, with eleven 
nodes (bias included) and the output with one node. 
The training set is composed of patterns constructed by the first 90 data, where the last 10 data are 
used to build the testing patterns. The training is performed for 20,000 iterations. The graphical plot of 
the actual and predicted km-between-failures is presented in Figure 3. The predictive performance of 
the IIR-LRNN is summarized in Table 1: a comparison is made with the results obtained with MLP, 
RBF and ARIMA models (Xu et al., 2003). 

 

Figure 3. IIR-LRNN predictive performance on the km-between-failures of car engines. 

Table 1. Prediction results of car engine km-between-failures using times series models (x 1000) 

Number km-between-
failures (actual) 

IIR-
LRNN 

MLP (logistic 
activation) 

MLP (Gaussian 
activation) 

RBF (Gaussian 
activation)  

AR 

91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

NRMSE 

59.3142 
59.6211 
61.0005 
61.4607 
63.6063 
57.0159 
57.9354 
60.6948 
61.3070 
62.0732 

 

58.7302 
60.0342 
60.6075 
61.8008 
62.7250 
58.8506 
59.2221 
59.6933 
60.0779 
62.3274 
0.0158 

59.5862 
60.8605 
60.8729 
62.0301 
62.4743 
58.7650 
58.6996 
59.3018 
61.0613 
62.3102 
0.0156 

59.5311 
60.3476 
60.7599 
61.8350 
63.4594 
58.1193 
58.4238 
59.4691 
60.0134 
61.7686 
0.0122 

59.7209 
60.7569 
61.1570 
61.0426 
61.4867 
59.4444 
58.4614 
59.3503 
60.0062 
61.4402 
0.0211 

60.1151 
58.4521 
59.6419 
61.6380 
62.2930 
63.2554 
55.0012 
58.4445 
61.7482 
64.6621 
0.0422 
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5. Conclusions 
In this paper, the dynamic modelling power of recurrent neural networks is employed to map the past 
failure data series into future failure occurrences. In particular, single- and two-step ahead IIR-LRNNs 
have been set up for forecasting failure times of engine systems. To the authors’ knowledge, this is the 
first time in which the properties of IIR-LRNNs are exploited for failure and reliability prediction. In the 
application presented, a novel formulation of the problem has required that the failure order numbers 
be considered as the time instants in a time series framework. The significance of the adopted neural 
modelling approach is that no a priori specifications of parametric failure distributions need to be made 
and verified. The results obtained show that the use of neural network models for failure forecasting is 
an effective way for tackling such problem. More precisely, a comparative study of IIR-LRNN, MLP, 
ARIMA and RBF models has shown that neural networks in general provide a promising alternative for 
complex time series modelling, leading often to better predictive performances than the ARIMA 
models. In particular, the proposed IIR-LRNN architecture has been shown capable of achieving 
comparable or lower prediction errors than traditional feed-forward MLP and RBF network models. 
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