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Possibility to use a neural network predictive control (NNPC) strategy for control of a 

heat exchanger is studied. The heat exchanger is a tubular one and it is used for pre-

heating of petroleum by hot water. The control objective is to keep the output 

temperature of the heated stream at a desired value and minimize the  energy 

consumption. The advantage of the NNPC is that it is not a linear-model-based strategy 

and the control input constraints are directly included into the synthesis. The NNPC of 

the heat exchanger is compared with classical PID control by simulations experiments. 

Comparison of the simulation results obtained using NNPC and those obtained by 

classical PID control demonstrates the effectiveness and superiority of the NNPC 

because of smaller consumption of heating medium.  

1. Introduction 

Predictive control is recently the most widely implemented advanced process control 

technology in industrial applications (Qin and Badgwell, 2003; Darby et al., 2009). The 

predictive control algorithms use an explicit process model to predict the future 

behavior of a plant and so, the term model predictive control (MPC) is utilized. 

Although industrial processes usually contain complex nonlinearities, most of the MPC 

algorithms are based on a linear model of the process. Recently, neural networks have 

become an attractive tool in the construction of models for complex nonlinear systems 

(Subhra et al., 2010). When a neural network is combined with MPC approach, it is 

used as a feed-forward process model for the prediction of process outputs (Ponton and 

Klemeš, 1993; Huang and Lewis, 2003; Kittisupakorn et al., 2009). Inclusion of 

constraints is the other feature that most clearly distinguishes MPC from other process 

control techniques, leading to a tighter control and a more reliable controller. 

Heat exchangers are key devices used in a wide variety of industrial applications. 

Control of a heat exchanger is a complex process due to its non-linear behaviour and 

complexity caused by many phenomena such as leakage, friction, temperature-

dependent flow properties, contact resistance, unknown fluid properties, etc. (Dugdale 

et al., 2002; Álvarez et al., 2007). Therefore, neural network model based control is 

expected to be a better alternative to the PID control (Varshney and Panigrahi, 2005), 
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although many industrial applications use PID control to maintain constant process 

variables. 

2. Process description 

Consider a tubular heat exchanger, where petroleum (subscript 1) is heated by hot water 

(subscript 3) through a copper tube (subscript 2). The controlled variable is the outlet 

petroleum temperature )(1 tout . Among the input variables, the water flow rate q3(t), is 

selected as the control variable, whereas the other inlet variables are constant. The tubes 

are described by a linear coordinate z, which measures the distance of a generic section 

from the inlet. Assume that the petroleum, tube and water temperatures 

),(1 tz , ),(2 tz , ),(3 tz  are functions of time t and the axial coordinate z, whereas 

water flow rate q3(t) is function of time t only. The petroleum, water and tube material 

densities  as well as specific heats CP are assumed to be uniform in the heat exchanger. 

The simplified nonlinear dynamic mathematical model of the heat exchanger can be 

described by three partial differential equations 
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where time constants T, liquid velocities w and gains Z are calculated as follows: 
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Here,  is the temperature, D is the tube diameter,  is the density, CP is the specific 

heat capacity,  is the heat transfer coefficient, q is the volumetric flow rate. Parameters 

and steady-state inputs of the heat exchanger are enumerated in Table 1. 

3. Predictive Control Using Neural Network Predictor 

Objectives of the predictive control strategy are to estimate the future output of the plant 

and to minimize a cost function based on the error between the predicted output of the 

processes and the reference trajectory. 
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Table 1: Heat exchanger parameters and steady-state inputs 

Variable Unit Value Variable Unit Value 

l m 12 1 kg m
-3

 810 

D3 m 0.5 2 kg m
-3

 8960 

D2 m 0.28 3 kg m
-3

 1000 

D1 m 0.25 CP1 J kg
-1 

K
-1

 2100 

1  W m
-2 

K
-1

 750 CP2 J kg
-1 

K
-1

 418 

2  W m
-2 

K
-1

 1480 CP3 J kg
-1 

K
-1

 4186 

q1 m
3 
s

-1
 3.7723 10

-4
 

s
1in K 308.5 

q3in
s
 m

3 
s

-1
 1.1111 10

-4
 

s
3in K 317.8 

 

The cost function is minimized in order to obtain the optimum control input that is 

applied to the nonlinear plant. In most of the predictive control algorithms a quadratic 

cost function is utilizes 
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where Nu is the control horizon, N1 and N2 are the minimum and maximum prediction 

horizons respectively, yr is the reference trajectory, ŷ is the predicted controlled output, 

λ is the weight factor, and Δ is the differentiation operator. The control input u may be 

constrained: maxmin u)ik(uu  , uNi ,,2,1  . The length of the control horizon 

Nu must satisfy the constraints 0 < Nu N2. The value of N2 should cover the important 

part of the step response curve. The role of the coefficient λ is to scale the second sum 

of squared control increments against the first sum representing squared predicted 

control errors. The output sequence of the optimal controller is obtained over the 

prediction horizon by minimizing the cost function J with respect to the vector of 

control inputs.  

When the future output of the plant in predictive control strategy is predicted using 

neural network plant model, the neural network predictive control (NNPC) is 

established. The general control structure for the NNPC is shown in Figure 1. The 

neural network model of the controlled plant is the important component of the NNPC 

methodology. 

Two-layer network with sigmoid transfer functions in the hidden layer and linear 

transfer functions in the output layer is used in our NNPC design. The prediction error 

between the plant output and the neural network (NN) output is used as the NN training 

signal. The NN plant model uses previous inputs and previous plant outputs to predict 

future values of the plant output. The structure of the neural network plant model is 

shown in Figure 2, where u(t) is the system input, yp(t) is the plant output, ym(t) is the 

neural network model plant output, the blocks TDL are tapped delay lines that store 

previous values of the input signal, 
ji,

IW  is the weight matrix from input number j to 

layer number i, 
ji,

LW is the weight matrix from layer number j to layer number i. 
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Figure 1: Neural Network Predictive Control 

This network can be trained off-line in batch mode, using data collected from the 

operation of the plant. The procedure for selecting the network parameters is called 

training the network. The Levenberg-Marquardt (LM) algorithm is very efficient for 

training. The LM algorithm is an iterative technique that locates the minimum of a 

function that is expressed as the sum of squares of nonlinear functions (Lera and 

Pinzolas, 2002; Madsen et al, 2004). 

4. Control of the heat exchanger 

1.1 4.1 Neural Network Predictive Control of the heat exchanger 
The designed controller uses a neural network model to predict future heat exchanger 

responses to potential control signals. An optimization algorithm then computes the 

control signals that optimize future plant performance. The neural network plant model 

was trained using the Levenberg-Marquardt algorithm. The training data were obtained 

from the nonlinear model of the heat exchanger (1) – (3). 

The used neural network predictive control method was based on the receding horizon 

technique. The neural network model predicted the plant response over a specified time 

horizon. The predictions were used by a numerical optimization program to determine 

the control signal that minimized the cost function (4) over the specified horizon. 

 

 

Figure 2: Structure of the neural network plant model 
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The controller block was implemented in MATLAB-Simulink with following values: 

N1=1, N2=8, Nu=2, =0.5, the number of neurons in the first layer of the plant model 

network was 6, the number of delayed plant inputs was 3, the number of delayed plant 

outputs was 2, sampling interval – interval at which the program collects data from the 

Simulink plant model was 2. One hundred of training samples was used. The plant input 

constraints were: 4
3

4 101.3)(105.1   tq m
3
s

-1
 and the plant output constraints 

were: K15.316)(15.309 1  tout . Number of plant training iterations was 500 and the 

training function for training the plant model was Levenberg-Marquardt one with the 

number of training epochs = 41. 

 

1.2 4.2 PID Control 
The PID controllers were tuned using Cohen-Coon and Strejc methods (Ogunnaike and 

Ray, 1994; Mikleš and Fikar, 2007) on the basis of linear model of the plant. The model 

was identified from the step response of the heat exchanger in the form of the 3
rd

 order 

plus time delay transfer function. The transfer function parameters are: the gain 

K = 
4107.3  , the time constant T = 18 s and the time delay D = 2.4 s.  The PID 

controller parameters obtained using Cohen-Coon method were kp = 
4107.1  , 

Ti = 32.7, Td  = 5 and those obtained using Strejc method were kp =
5102.6  , Ti  = 44.4, 

Td = 14.6, where kp is the proportional gain, Ti is the integral time  and Td is the 

derivative time. 

Simulation results obtained using designed neural network predictive controller and two 

PID controllers are shown in Figures. 3(a) and 3(b). Figure 3(a) compares controlled 

output in the task of set-point tracking.  The control response obtained by NNPC is the 

best one, it has the smallest overshoots and the shortest settling times. The energy 

consumption is measured by the total amount of hot water consumed during the control 

process. The situation for NNPC and PID control is presented in Figure 3(b), and it can 

be stated that the smallest energy consumption is assured using NNPC . 
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Figure 3: Comparison of the neural network predictive control and PID control: a) 

outlet temperature, b) hot water consumption 
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5. Conclusion 

In this paper, an application of a neural network model based predictive control strategy 

to a heat exchanger is presented. The simulation results confirm that NNPC is one of the 

possibilities for successful control of heat exchangers. The advantage of this approach is 

that it is not linear-model-based strategy and the control input constraints are directly 

included to the synthesis. Comparison to classical PID control demonstrates the 

superiority of the NNPC. Implementation of NNPC in industrial application can lead to 

significant energy savings. 
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