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In this paper, an innovative design methodology of azeotropic distillation processes by
using a self-heat recuperation technology has been proposed to reduce the energy
consumption. In this process, the heat of the distillate and condenser of the distillation
column are recuperated by compressors and exchanged with the heat of the feed and
reboiler of the distillation column, leading to the reduction in the heat energy to the
process. The process simulation results show that the proposed methodology achieves
the large amount of energy reduction as compared with the conventional azeotropic
distillation process

1. Introduction

Recently, bioethanol has rapidly become in great demand all over the world in
substitution for petroleum. To produce the bioethanol, it is necessary to separate ethanol
from ethanol-water mixture after fermentation of alcohol. In practical, the distillation is
widely used for this separation of this mixture. However, this distillation process is a
well-known process as an energy—consuming process because ethanol and water form
an azeotropic mixture. As a matter of fact, it is reported that about 50% of heat value of
bioethanol is required to distill the ethanol from the mixture. To reduce the energy
consumption of this process, many researchers proposed membrane separation
techniques (Gomez et al. 2007, Vane and Alvarez 2008) or pressure swing adsorption
(PSA) techniques (Modla and Lang 2008), instead of azeotropic distillation. Most of the
researchers have succeeded in developing appropriate membranes and sorbents for these
technologies to achieve the efficient distillation. However, they have paid less attention
to the scheme of the process itself. As a result, the minimum energy requirement of the
process has not been reduced. On the other hand, many innovative distillation columns
have been developed, such as vapor recompression distillation column (VRC, Brousse
et al. 1985, Annakou ef al. 1995, Gros and Brignole, 1998) and heat integrated
distillation column (HIDiC, Huang et al. 1996a, b, Nakaiwa et al., 2000, Oluyjic et al.,
2003, Huang et al., 2006a, b) to reduce the energy consumption of the distillation
column. However, these heat integration methods still have problems to complicate the
designs and operations of distillation columns. Additionally, although almost all of
these design methods are focused on the heating by reboiler in the distillation column,
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they are not interested in the heating of feed stream to the distillation. Therefore, the
energy balance of the heating duty and cooling duty are not well considered. Recently,
by incorporating compressors and heat exchangers, the authors have developed another
attractive technology to reduce the energy consumption (Sato et al., 2007, Tsuru et al.,
2008, Kansha et al., 2008). In this technology, a process unit is divided into functions
and the external heating and cooling load is minimized by using a self-heat recuperation
technology. As a result, the energy consumption of a process can be greatly reduced.
Following this technology, an innovative design methodology of distillation processes
for azeotrope has been proposed in this paper. The simulation results demonstrate that
the energy consumption for distillation processes of azeotropic mixtures with self-heat
recuperation is drastically decreased as compared with a conventional process which
uses external heat source.

2. System Configuration

Figure 1 shows the structure of the proposed integrated process module which consists
of three modules, the first and second distillation modules (M1, M3) and heat
circulation module (M2) in the case of ethanol-water mixture. In this integrated process
module, stream 1 represents the azeotropic mixture feed stream and stream 2 represents
the entrainer (benzene) feed stream. These streams are fed into the first distillation
column (DC1). The vapor stream from the distillation column is compressed
adiabatically by a compressor (C1) (4 —5). Successively, stream 5 is cooled by a heat
exchanger (HX1) (5 —> 6) and the pressure and temperature of stream 6 are adjusted by
valve (V1) and cooler (L1) (6 = 7 — 8). The liquid stream 8 is divided into two
streams (9, 10) in the decanter (D). The stream 9 is mainly consisted of benzene and
recycled with the feed benzene (3). The bottoms of DC1 are divided into two streams
(12, 14). The stream 14 becomes the product (pure ethanol). The stream 12 is heated by
the heat exchanger (HX1) and fed into DC1. In the heat circulated module (M2), the
effluent stream (10) from MI is heated by heat exchanger (HX2) and is fed to the
second distillation column (DC2). At the same time, the recycled stream, which is
distillate stream of DC2, is adiabatically compressed by compressor (C3) (18 —27),
cooled by exchanging the heat in HX2 (27 —> 28). The pressure and temperature of the
stream 28 are adjusted by the valve and cooler (V2, L2) (28 — 29 — 30) and the stream
30 is fed into DCI1 as the recycled stream. Next, in the second distillation module (M3),
the feed stream 15 is separated into distillate (16) and bottoms (17) by the distillation
column (DC2). The vapor distillate 16 is divided into two streams (18, 19) by separator.
The stream 18 becomes recycle stream and returned to M2. The stream 19 is
adiabatically compressed (19 —> 20) and exchanged the heat in the heat exchanger
(HX3) (20— 21). The temperature and pressure of the stream 21 are adjusted by valve
(V3) and cooler (L3) (21 =22 —>23) and then the effluent stream is fed into DC2.
Successively, the bottoms 17 from DC2 are divided into two streams (24, 25). The
stream 25 is the product water. The other stream 24 is vaporized by HX3 and fed into
DC2 (24 = 26).
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Figure 1 The proposed integrated process module for azeotropic distillation column

3. Simulation Results

We calculated energy consumption for the proposed integrated process module for
azeotropic distillation column and compared with energy consumption for a benchmark
azeotropic distillation column in an ethanol-water mixture. The process simulation was
conducted using the commercial simulator PRO/II™ Ver. 8.1(Invensys).

Considering a distillation process which separates ethanol from the mixture of ethanol
(80mol%) and water (20mol%) at standard temperature (77 °C) and pressure (1 kg/cm?),
we assumed that the flow rate was 10 kg-mol/hr and that the composition of benzene
was less than 1.0x 10 in the product ethanol from the first distillation column (DC1)
and the composition of ethanol was less than 1.0x 10~ in the product water from the
second distillation column (DC2). The energy consumption of the proposed integrated
process module was elucidated by comparing of that of a conventional azeotropic
distillation system. Other conditions of the distillation column are shown in Table 1.

In all heat exchange systems, the minimum temperature difference was kept to be
constant at 10 K. The Non Random Two-Liquid (NRTL) was applied in liquid. We
assumed that the adiabatic efficiency in the compressor was 100%. The work required
for changing pressure (W¢) is expressed as follows;

WC:Hout'}Iin (1)
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where the enthalpy of the stream is changed from Hj, to H,, in adiabatic irreversible
process.
In the proposed system, the net work () is represented as the following equation;

Woet = We (2)

where W represents the work of the compressor.

The distillates from the distillation columns were condensed and exchanged the latent
heat to the bottoms and feed as shown in Fig. 2. The self-heat exchange duty is
increased to 453.2 kW. It can be seen that the total heating duty is covered by self-heat
recuperation results in considerable reduction of energy consumption. The total work of
the proposed module with self-heat recuperation can be reduced (57.4
kW(=28.9+3.3+25.2 kW), Fig. 2) comparing with the external heating load of the
benchmark flash distillation (395.0 kW(=282.4+112.6 kW), Fig. 3). Thus, the proposed
system drastically reduces the total energy consumption.

From this simulation study, it was demonstrated that the proposed integrated process
module contribute effectively to the reduction of energy consumption, indicating the
proposed module is very promising technology for distillation process

4. Conclusion

The innovative modularity based on self-heat recuperation for distillation process of
azeotropic mixtures is proposed in this paper. This module only requires the energy to
drive heat circulation, results in the reduction in the total amount of energy consumption.
The simulation studies which assume the feeds are the mixture of ethanol (80mol%) and
water (20mol%) show that the proposed modules can reduce the external heating load
for azeotropic distillation to 14.5% compared with the benchmark distillation systems.
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Table 1 Conditions for the distillation column

First Distillation Column Second Distillation Column
(DC1) (DC2)
Number of Stages 20 Number of Stages 10
Pressure 1 kg/em® Pressure 1 kg/em®
Feed Stage.of Azeotropic 4 Feed Stage 5
Mixture
Feed Stage of Benzene 1 Reflux Ratio 2
Feed Stage of Recycled 4
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Figure 2 Simulation Results of the proposed integrated process module for azeotropic

distillation column
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Figure 3 Simulation Results of the conventional azeotropic distillation column
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