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The present work presents the modeling and kinetic parameters estimation for the semi-
continuous precipitation process of calcium carbonate. The parameters estimation was
performed using genetic algorithms (GA) throughout minimization of two objective
functions: (i) the norm of the residual experimental particle size distribution - computed
data and (ii) the norm of the population balance (PB) residual computed with the esti-
mated kinetic parameters. The PB equation takes into account homogenous nucleation,
size dependent growth and agglomeration as the governing mechanisms of precipitation.
The theoretical particle size distribution (PSD) was approximated by a continuous pa-
rameterized functional built up from piece-wise time-weighted exponential functions
having time and crystal size as independent variables. The parameters of the functional
were estimated together with the aforementioned kinetic parameters. The methodology
was applied using data obtained for the semi-continuous precipitation of CaCOs by the
chemical reaction between equivalent volumes of CaCl, and K,COjs solutions.

1. Introduction

The precipitation of sparingly soluble salts as a result of a homogeneous reaction in
semi-batch crystallizers is a common procedure in industrial fabrications of chemicals.
The homogeneous nucleation induced by the fast chemical reaction generates new parti-
cles all over the reaction time. The PB technique is widely used to model crystallization
and precipitation processes as it captures the changes in PSD seen as the result of four
basic processes acting upon the particles within a control volume: birth, growth, break-
up and agglomeration (Barbier et al., 2009). Considering the characteristic particle size
(denoted by L) as the internal coordinate of the solid phase that is formed, the popula-
tion balance equation (PBE) for the dynamic regime can be written as:

on(L,t) N G[G(L,t)'n(L,t)J
ot oL
where n(L,t) is the population density function, G(L,) is the growth rate function

=r (n, L, t) (N
and r(n,L,¢) is a complex functional, with integral terms, representing generation and/or
death functions that model nucleation, agglomeration and/or breakage processes.
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2. Experimental

The precipitation was carried on in a 0.5 L crystallizer at 30 °C. A volume of 0.250 L of
0.1 M CacCl, solution was initially placed in the vessel. An equivalent volume of 0.1 M
K,CO; solution was added at a flowrate of 1 L/h. Suspension samples were taken at
different feeding moments and PSD was measured, in terms of mass distribution, on a
laser beam particle analyzer. The precipitated solid phase was identified as pure calcite
according to FT-IR spectra analysis.

The population density function n(L) was computed from the experimental PSD using
the common transformation of first order approximation:

[M(L)—-M(L_)] -m,
l—‘f 'ps . kv : (Ll - Lifl)
where M(L) is the cumulative mass distribution, m; is the solid mass in the unit volume

of suspension, evaluated from overall mass balance, p; is the density of calcite and %,
the volumetric shape factor which, for calcite, takes the value of 1.

n(L) = @

3. Mathematical model

3.1 Kinetic model
The precipitation happens due to a supersaturation generated by the chemical reaction:

CaCl, + K,CO, —> CaCO, +2KClI 3)

The resulted calcium carbonate has a very low solubility and precipitation occurs almost
instantaneously. The relative supersaturation is computed according to the general mass
action law for the ionic reactions and assuming perfect mixing of the reaction system:

s
where the solubility constant, K,,, has the value of 3.4-10° (mol/L)2 for calcite. The
concentration of Ca>" and CO;” ions are calculated from mass balances at the given
flowrate. The supersaturation increases rapidly during the first 10 s from the addition of
the second reagent, then decreases while nucleation and crystallization of the solid
phase progress and calcium ions are consumed. The assumed crystallization mecha-
nisms consist of primary and secondary processes (solid phase homogenous nucleation
and crystal growth for the former, agglomeration for the latter). The overlapping o these
mechanisms, all along the reaction period, generates specific PSD shapes, with steep
variations especially in the range of small particles. The kinetic models assumed for
each implied mechanism reflects the dependency of its specific rate on supersaturation.

B (1)=k,[S(0)]" Q)
G(L,tH)y=G,(@)-(1+a- L)” (6)
G, (1) = kg -[SO]" 7

where B’ (t) is the nucleation rate depending only on supersaturation while G(L,t) is

the crystal growth rate depending on the crystal characteristic length, L. G, (t) is the

growth rate at zero nucleus-size, while a and b are the parameters of the size dependent



growth model.

3.2 Population balance equation
The general PBE for precipitation describes the time and size variation of the number

based density function n(L, t) when different overlapping mechanisms are active:
1 a[n(L,r).V(L)]+a[G(L,r)-n(L,t)]
V(t) ot oL

where V(1) is the reaction volume while B(L,¢) and D(L,t) represent the birth and death
functions characterizing the agglomeration process.

=B"6(L—L,)+B(L,t)-D(L,t) (®)

B(L,t):%jﬂ(L,y,t)-n(L—y,t)~n(y,t)-dy )
D(L,t)= jﬂ(L,y,t)-n(L,t)~n(y,t)-dy (10)

where £ is the agglomeration kernel representing the rate constant for the agglomeration
process. This constant can be also expressed as a compound function containing the size
dependency and the influence of supersaturation:

B(L,y.t)=pB,(t)- B (L.y) (11)
B (1)=ky-[S(1)]" (12)

At high supersaturation, bridges can form between particles that collide and larger parti-
cles could be generated. This is the reason why the time dependency of the agglomera-
tion kernel is expresses as a function of supersaturation. As the size dependent crystal
growth stands for higher growth rate for larger particles and thus can cover also the ag-
glomeration of large particles with newly formed nuclei, the agglomeration kernel used
in the present work includes a correction size dependent factor that increases the contri-
bution of the agglomerates formed throughout the collisions between medium particles,
curbing the aforementioned effect.

The PBE was rendered dimensionless by using the notations: & = L/L™™ | 7 =¢/T and
v(&,7)=n(&7)/n™ , where L™ is the maximum obtained crystal size, 7 =V,/F, is

the crystallizer time-scale, defined as the ratio between the volume V; of the reagent
initially added in the precipitation vessel and Fj the volumetric flowrate, while n™ is
the highest value of the population density function. With these notations, the dimen-

sionless population balance equation becomes:

dv(&r) v(ér) ' 8U(§,T)+U(§,T)»a-b-Lm““
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The significance of B*, G* and f* is the following:

5 ()= T A)T (14)




G'(z)-(1+a- L™ &)1
Lmax
t_ nmax 'Lmax

ﬂ*(r)zﬂO(T) . (16)

The function chosen for the correction factor to reflect the particle size dependency of
the agglomeration kernel, as mentioned before, is:

B (&) =N¢-(1-¢)E-(1-&) (17
The mathematical model defined by the equations (13-17) is characterized by the fol-
lowing parameters that have to be estimated following an appropriate optimization pro-
cedure: kg, ny, ke, ng, a, b, kg ng.

(15)

G*(&7)=

3.3 Continuous functional approximation of the population density function

The experimental distribution data measured after 480 s and 960 s (900 s is the time
corresponding to the end of the second reagent addition), are presented in Figure 1. The
shape of this curves, as well as the nature of population balance equation are good rea-
sons to assume for the dimensionless population density function a continuous param-
eterized functional built up from piece-wise time-weighted exponential functions having
time and crystal size as independent variables. We suggested a functional of the type:

f(ér)=exp [("f +b, 'T)+(cf +d, 'T)e(efw.t)ﬂ(gf +h, 'T)e(lmf.r)ﬂ (18)

This functional can approximate the experimental distribution, when appropriate values
for the function’s parameters (a; b; ¢ d; e; f; g5 hy i and jj) are used. Therefore, a
suitable optimization procedure shell be used in order to search for both sets of parame-
ters, corresponding to the functional mimicking the experimental distribution, and to the
crystallization mechanisms, respectively.

3.4 Objective functions and optimization procedure
The validation of crystallization mechanisms assumed and the estimation of correspond-
ing kinetic parameters is realized by formulating a two-objective function:

F1=min ﬁ:[ln( £)~In()] (19)

F2=min /i v, (&) (20)

where N is the total number of experimental points describing the time profiles of the
crystal size distribution.

The first objective function stands for the goodness of fit with the experimental distribu-
tion curves while the second objective function reflects the residual of the population
balance equation. Minimizing the second objective function the values of kinetic pa-
rameters that verify the PBE will be estimated.

The minimization was carried out using an improved version of GA (Réducan et al.,
2004) which is expected to give better results due to its capability to explore a wide
range of parameter variation and find the global optimum even for multimodal objective
functions which is the case when 8 kinetic parameters and 10 functional parameters are
to be simultaneously identified.
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Figure 1. Experimental and computed population
density function

operators  (selection, crossover,
mutation and cloning), are used to create new offspring from best fitted individuals; (d)
when a large part of the population has too many bad fitted individuals, preventing them
to participate at multiplication, apply cloning by selecting randomly from the better fit-
ted individuals and (e) if elitism is sought, the individuals from the new population not
born through crossover are generated randomly around the best fitted individual, using a
shrinking standard deviation (Raducan et al., 2004).

4. Results and discussions

The mathematical model was solved for a time period of 960 s and the experimental
data obtained after 480 s and 900 s were used in the optimization stage. The procedure
defined in this work avoids the integration of the integro-differential equation represent-
ing the PB, since the functional is differentiated analytically and then introduced into
the PB equation. Solving the PBE using the normal methodologies implies that the de-
rived system of ODEs often becomes stiff, with the pending numerical difficulties, due
to the continuous nucleation process and the overlapping of agglomeration (Jones et al,
2005). On the other hand any numerical approximation of the PB may introduce signifi-
cant computational errors. We hope that using a continuous functional to approximate
PSD will avoid such difficulties.

Several iterations were necessary to isolate the best parameters’ intervals. Since the ex-
perimental PSD profiles are affected by errors (measurements, lumping in classes, pass-
ing from mass to number distributions), the two norms constituting the vector objective
function should behave opposite during minimization: when the functional approaches
too much the experimental PSD, the errors will drive the PB equation from closing. On
the other hand, the mechanisms acting during the crystallization are more than what we
took under consideration in our model (but they are reflected in the values of experi-
mental PSD), so a complete closure of the PB equation will increase too much the dis-
tance between the theoretical and experimental PSDs. Consequently, a Pareto front will
appear during optimization, the evolution of which is depicted in Figure 2. It may be
noticed that the Pareto front evolves towards lower values for both objective functions.
As can be seen analyzing the solution set, an increase in the precision of experimental



data approximation by the computed distribution function leads to a set of kinetic pa-
rameters that verify less satisfactory the PBE. As Figure 2 shows, function F1 cannot
take smaller than 2.5 values while the objective function F2 decreases as the iterative
process proceeds and the Pareto front becomes more restrained. For the final values of
the optimized parameters the obtained continuous function gives a very good approxi-
mation of the experimental curves (Figure 1).

Table 1 Kinetic parameters

5 s 5 :
kg, nom>s'  ng kg, m's ne a,m b kp,m’s' ng

3.22-10° 0.037 9.35-10" 0944  1.02:10° 0910 1.58.10"* 1.490

The values of the optimized kinetic
parameters (see Table 1) show that
under the experimental conditions
nucleation is dominant and the in-
crease in crystal size is mainly due to
the size dependent crystal growth
mechanism. The fact that F2 has a
I rather high value means that not all
o First iteration

¢ 4 Middie iteration the computed PSD are good solu-

@ Last iteration . . R
tions of the PBE. This might prove
that the mechanisms considered in
modelling the crystallization process
Figure 2. Variation of objective function F2 vs. | should be improved: agglomeration
objective function F1 kernel and heterogeneous nucleation
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which implies a dependency on the
suspension’s density.

5. Conclusions

The procedure defined in the present work, which still needs refinements, enabled us to
obtain with reasonable computing efforts a good insight of the precipitation process, to
validate the mechanisms implied and to estimate the kinetic parameters.
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