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In the industrial adiabatic benzene nitration process, the by-products dinitrophenol
(DNP) and trinitrophenol (TNP) have a great contribution to the environmental footprint
of industrial plants. Therefore, nitrophenols (NPs) reduction is a relevant target in
process operations. In this context, Quadros et al. (2005) studied the benzene nitration
in a pilot plant and developed both mechanistic as well as empirical multivariate linear
regression (MLR) models for the formation of mononitrobenzene (MNB) and NPs.
Nevertheless, those MLR models are not able to predict the global performance in a set
of continuous adiabatic reactors in series. To overcome this, in the present work new
models were developed by a different approach which includes in the set of regressors
the CSTR outlet state variables. In order to develop the MLR models, the sequential
forward stepwise regression method was applied. The extended models thus obtained,
confirm that the selectivity and conversion of these liquid-liquid reactions can be
optimized, as they depend significantly on reaction temperature, residence time and
interfacial area as well as on the concentrations of some of the chemical compounds
involved in this process.

1. Introduction

Benzene nitration with mixed acid is an important industrial chemical process involving
liquid-liquid reactions, usually carried out adiabatically in a series of CSTRs, whose
degree of conversion to MNB and selectivity are a function of a wide range of
parameters. There are several by-products that can be formed depending on the process
variables set-points. The most important by-products formed are the nitrophenols (NPs),
namely dinitrophenol (DNP) and trinitrophenol (TNP). Their concentration in the outlet
stream can be in the range of 3000 to 5000 ppm, and these compounds cannot be
disposed without a specific treatment. Therefore, improving process selectivity is a high
priority goal. Addressing this problem, Quadros et al. (2005) studied benzene nitration
in a pilot plant under operating conditions in the range of those used in industrial
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practice. They developed both mechanistic and empirical (multivariate linear regression,
MLR) models for the formation of MNB and NPs. As explanatory variables for the
empirical MLR models, several operating parameters were used, including some of the
reactor inlet conditions: a; T,; NA;; SA;; 0, (Fp/Fy)i. The models obtained exhibit good
prediction ability. In the industrial adiabatic process in CSTRs a high conversion is
expected in the first reactor (Alexanderson et al. 1978), where Quadros et al. (2005)
models can be accurately used. However, the inlet conditions of the subsequent reactors
are expected to be quite distant from those in the first one, which means that the models
are no longer valid for those reactors. In order to extend the prediction ability of the
MLR models, using the same data, new models are here developed, by replacing the
inlet variables in the set of the explanatory regressors, with outlet variables. By doing
so, the set of regressors becomes the following one: a; T,; NA,; SA,; 0, (Fg/Fx)o-
Additionally, DNP was considered as a regressor in TNP models since Burns and
Ramshaw, 1999 support that TNP is produced by nitration of DNP.

2. Building the MLR models

The models were established by resorting to the stepwise regression methodology (SR),
implemented in Statistica 6.1 (StatSoft). Variable transformations, such as log x, x> and

Jx , were considered as additional regressors, along with the original untransformed
variables (x), in order to model the process non-linearity, but using the formalism of
linear regression ( models are linear regarding to parameters, but non-linear regarding to
variables). The SR methodology (Montegomery and Runger, 2007) consists of
incrementing, step by step, the number of explanatory regressors, starting by a one-
variable model using the regressor variable that has the highest correlation with the
response variable y. Then, at each step, another regressor is added, if it is considered
significant, according to the partial F-test, and the set of previously selected variables
are analyzed in order to check whether any of them should be disregarded. Regression
analysis requires the residuals in the estimated regression model to be normally and
independently distributed with mean zero and constant variance, 6°, which must be
verified through residual analysis, namely using the normal probability plot of residuals
and the plot of residuals against y or §, allowing the verifications of residuals
homoscedasticity and independence. Several statistical tests are relevant in the analysis
of the estimated models. The test for significance of the regression model as a whole, is
a ANOVA test to determine whether a significant linear relationship exists between the
response variable y and a subset of regressor variables considered. Tests on individual
regression coefficients, called partial or marginal tests (Montegomery and Runger,
2007), are useful in determining the potential value of each regressor in the model, and
they are based on a student-t statistic. Significance is usually assessed by calculating the
p-level associated with the statistical tests. The p-level represents the probability of
obtaining a deviation at least as large as the one observed, assuming the null hypothesis
to be correct. In the case of the tests mentioned so far, the higher the p-level, the less the
parameter significance. A p-level of 0.05 is customarily treated as a border-line
acceptable error level.

We should point out that SR does not avoid completely collinearities in the regressors
selected, something to be done by other means. Multicollinearity cannot be seen as a
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modeling error itself, but as a condition regarding collected data. However, it can have
serious effects on the estimates of the regression coefficients and on general
applicability of the estimated model. A parameter that enables the quantification of
multicollinearity is the variance inflation factor (VIF), defined by (Montegomery and
Runger, 2007):

VIFBj)=——  j=12..k 1)

2
1-R

where RJ2 is the coefficient of multiple determination resulting from regressing x; on

the other k-1 regressor variables. The larger the VIF, the more severe the effect of
multicollinearity might be. Some authors support that, if any VIF exceeds 10,
multicollinearity becomes a real problem. Another clue for the existence of
multicollinearity occurs when the F-test for significance of regression is significant, but
tests on the individual regression coefficients result in not significant scores for some
variables.

Several criteria may be used for evaluating and comparing the different regression
models obtained (Chatterjee et al, 1991). A commonly used criterion is based on the
value of the multiple correlation coefficient, R?, or the adjusted R-squared, Radj*. Both
are measures of the model fitting quality and have unity as maximum value (for perfect
models), but only Radj’ introduces penalties linked to the number of variables
considered in the model, a way to guard against over-fitting. In fact, Radj® will often
stabilize and actually begin to decrease as the number of non-significant variables in the
model increases. Usually, a model that maximizes Radj® is considered to be a good
candidate for the best regression equation. The root mean square error (RMSE),
equation 2, and the root mean square relative error (RMSRE), equation 3, were also
measures considered for assessing and comparing the MLR models.

n A 2
RMSE=J§(yi—yij %n—p) 2
n A 2
s - (55 fo < o
i=1

As to prediction assessment, an approach consists in splitting the observations into two
sets: a training set (TRS) and a test set (TSS). The regression parameters are
recalculated using only the TRS observations (e.g., by random selection of 80% of the
original observations). All the parameters that enable to check the model adequacy are
recalculated and compared with the complete model. The TRS model is subsequently
used to predict y values, ¥, for the TSS observations. The quality of the prevision may
be done by calculating the RMSE and the RMSRE for the estimated TSS values and
compare with their counterparts for the TRS model and complete model (RMSEP and
RMSREP), that differ from RMSE and RMSRE only in the denominator, which is now
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simply n. A good prevision ability, coherent in all cases, indicates that the estimated
model is stable and robust, useful features in practice.

When using multiple regression one also occasionally finds that some subset of
observations is unusually influential. Sometimes these influential observations, often
called outliers, are relatively far away from the vicinity where the bulk of data were
collected. They can be related to wrong measures or not. In this situation, the first step
is to identify them, and then decide whether they should be, or not, rejected. Residual
analysis helps in this activity. A model can be considered correct and precise, at a 95%
confidence level, if the standardized residuals are randomly distributed about zero and
confined approximately between the *2 range. Other measures, such as the Cook’s
distance and the Mahalanobis distance, also indicate if an observation is influential. The
values should be of about the same magnitude for all observations.

3. Results and conclusions

The procedure described above was carried out using the set of data of Quadros et al.,
2005 but this time with the outlet operating conditions replacing the inlet ones as
variables (Table 1). As a result, several models where estimated but, after careful
analysis, only five happened to be adequate (equations 4 to 8).

DNP In (DNP) = -9,31683+3,07843 In(T)-0,01527(Fg/Fx)s+0,15611n (a)
—0,04344NA, 4

TNP1  In(TNP) =-103,492+0,103T—1,17x107a+0,116(NA,)*+0,725In(NA,)
+23,045In(SA,)+0,4761n8 5)

TNP2  In (TNP) = -94,4123+0,108T+0,9978(NA,)-0,2236In(Fg/Fx),
+20,4036 In(SA,)+ 0,62491n0 ©6)

TNP3  In (TNP)=-11,66+4x10*T>4,6x10> va +0,0988 (NA,)?
+0,6711 In(NA0)+2,4x107(SA,)*+0,5762In8+0,0493 v DNP (7)

TNP4  In (TNP) = -9,72948+3,9x10T?-0,01059 Va +0,74229In(NA,)
+2,26x107(SA,)*+0,626991n6+0,03595 v DNP (8)

Table 2 presents some of the several statistical parameters calculated for models
adequacy checks. It is very clear that all the models show good data fitting ability, with
excellent scores for Radj®. An adequate prediction ability can also be inferred from the
agreement between RMSRE values
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Table 1 — Range of the variables used in the MLR models.

Variable Quadros et al. (2005) Present work
T 81-135 81-135
(Fp/Fy); 093-1.5 not used
(Fa/Fx)o not used 03-16
a 580 —58 000 580 —58 000
0 1.9-6.1 1.9-6.1
NA; 2.6-64 not used
SA; 57-69 not used
NA, not used 0.06 -4.5
SA, not used 58-172
DNF 138 — 1500 138 — 1500
TNF 0-1211 0-1211

In Figure 1 we can also confirm the good prediction ability of the DNP model, with
most of the points lying very close to the line y=y, and the same results can be extended
to the TNP models.

The four models obtained for TNP are statistically valid and therefore are all shown
here. Model TNP2 (equation 6) has the advantage of only using operating conditions
that are measured in the process, therefore not requiring the estimation of other
parameters.

The DNP and TNP model results for the outlet stream of a CSTR were compared to
those obtained with the models in Quadros et al., 2005 showing good agreement. The
advantages of the models presented here stand out when the models are used to
calculate DNP and TNP weight fractions in continuous reactors in series. In fact, only
the models in equations 4 to 8§ are adequate as the concentration values are, in this case,
inside the ranges of data used to estimate the models.

The present work constitutes a contribution to increasing the understanding of the MNB
production process in industrial operating conditions, while extending the DNP and
TNP concentration prediction ability. Among several applications, the models
developed can be combined with other models for estimating the output variables (now
set as regressors), allowing the prediction of by-products formation in CSTRs in series.

Table 2 —Statistical parameters for Quadros et al., 2005 models and the extended MLR

models
Quadros et al, 2005 Extended MLR models

DNP TNP DNP TNP1 TNP2 TNP3 TNP4
N 139 130 147 132 135 134 135
Radj? 0,9738 0,9569 0,9533 0,9773 0,9757 0,9786 0,9661
RMSRE (%) 6,65 -- 1,61 3,47 3,77 3,30 4,56
(complete)
RMSRE (%) 6,76 16,53 1,59 3,49 3,62 3,23 4,45
(TRS)
RMSRE (%) 5,37 13,1 1,73 3,89 4,28 4,44 4,96
(TSS)
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Figure 1 — Predicted versus observed values for the In(DNP) model: results for the
training and test data sets.

Notations

a interfacial area between the organic and acid phases (m*m?®)

DNP DNP concentration in the outlet organic stream (ppm)

Fg/Fy ratio of the inlet molar flow rates of benzene and nitric acid

k number of regressors in the model

n number of observations (experiments)

NA nitric acid inlet weight fraction in the acid phase (wt %)

p number of parameters in the model

SA sulfuric acid inlet weight fraction in the acid phase (wt %)

T temperature in the reactor (°C)

TNP TNP concentration in the outlet organic stream (ppm)

Subscripts Greek

i reactor inlet (5] residence time (min)
o reactor outlet B model parameter
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