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Microfluidic bumper arrays (also referred to as Deterministic Lateral Displacement devices, DLD) have been 
proposed in the last fifteen years as a simple and effective mean to implement the label-free, size-based 
separation of a suspension of micrometric-sized particles. The separation resolution in these devices 
resolution is significantly higher than that associated with more traditional separation techniques such as, e.g., 
SEC columns. In DLD devices, the suspended particles are dragged by a pressure-driven flow through a 
periodic array of obstacles, typically hosted in a channel with rectangular cross-section. Experiments have 
proven that if a focused current entraining a suspension of particles of different size is continuously introduced  
upstream the obstacle array, size-sorted populations of particles can be collected at different locations of the 
device outlet. This is because,  as a consequence of the fluid drag and of the hydrodynamics-mediated 
collisions with the obstacles, particles of different size follow on the average differentmigration pathts, which 
are at an angle with respect to the average direction of the carrier flow. Based on the DLD separation 
mechanism, prototypes have been constructed and used for sorting and isolating suspensions of clinical and 
biological interest, ranging from the size of red blood and circulating tumor cells, down the nanometric scale of 
exosomes. Recently, a novel chromatographic use of DLD devices has been proposed, where the suspension 
is separated in time and space coordinates by exploiting the dependence on particle mobility on particle size. 
By investigating particle transport in a idealized setting (associated with point-sized obstacles), it has been 
argued that the separation-enhancing effect due to mobility should allow, in principle, to effectively separate 
particles suspensions characterized by a narrow size distribution to very high degrees of resolution. In this 
contribution, the possibility of reproducing the same phenomenon in a classical pressure-driven flow in the 
presence of finite-sized obstacles is explored. Specifically, it is shown that (ideal) conditions similar to the type 
of particle motion predicted for point-size obstacles can be obtained even in the presence of obstacles of finite 
dimension, provided that the obstacle shape near the collision point is accurately tuned to obtain a diffusion-
controlled behavior of particle dynamics.  
1. Introduction 
There are numerous examples of engineering applications where the interaction between deterministic (i.e. 
convective) transport and diffusive Brownian motion at lengthscale much smaller than the size of the 
equipment plays a key role in determining the overall performance of the process, from micromixing 
technology (Garofalo et Al, 2010) to chromatographic separations (Adrover et Al, 2009).  
In the context of microfluidics-assisted separations, periodic arrays of micrometric obstacles - also referred to 
as Deterministic Lateral Displacement (DLD) devices - have been attracting increasing attention in the last 
fifteen years (McGrath et Al, 2014) as a simple and effective tool to implement the label-free, size-based 
sorting of a suspension of micrometer-sized particles with a resolution that finds no correspondence in more 
traditional separation techniques such as, e.g., SEC columns (see, e.g., Sun et Al, 2004). In DLD devices, the 
suspended particles are dragged by a pressure-driven flow through a planar spatially-periodic array of 
obstacles embedded in a channel with rectangular cross-section. Experiments have proven (Huang et Al, 
2004) that if a  focused current entraining a suspension of particles of different size is continuously fed at a 
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point upstream the obstacle array, size-sorted sub-populations of particles can be collected at different zones 
of the device outlet. This property results from the fact that, as a consequence of the fluid drag and of the 
hydrodynamics-mediated collisions with the obstacles, particles of different size follow on the average different 
trajectories characterized by different migration angles with respect to the average direction of the carrier flow 
(see Section 2). Based on the DLD separation mechanism, prototypes have been constructed and used  for 
sorting and isolating suspensions of clinical (Loutherback et Al, 2012; Holm et Al, 2011) and biological interest, 
ranging from the size of red blood and circulating tumor cells down the nanometric scale of exosomes and 
viruses (Wunsch et Al, 2016). Here, a novel chromatographic use of DLD devices is proposed, where the 
suspension is separated in time and space coordinates by exploiting the dependence of particle mobility on 
particle size. By investigating a theoretical model of particle transport accounting for the action of the 
deterministic drag of the suspending fluid and Brownian fluctuations, it is shown that the separation-enhancing 
effect due to mobility should allow, in principle, to effectively separate particles suspensions characterized by 
a narrow size distribution to a very high degree of resolution. Specifically, the possibility of reproducing these 
conditions in a classical pressure-driven flow in the presence of finite-sized obstacles is explored. 

2.System geometry and transport model 
Figure 1-(a) depicts a typical geometry of a stretched obstacle lattice hosted in the microfluidic separator. The 
Cartesian lattice of obstacles is defined by the vectors ܍ଵ and ܍ଶ. The angle ߠ௟ between the vector ܍ଶ and the 
direction of the lateral walls of the channel  is referred to as the lattice angle. Coordinates are next made 
dimensionless by taking the cell edge, say ℓ=||܍ଶ||, as a reference length. The carrier fluid suspending the 
particles is pushed by a pressure drop through the obstacle lattice. Because of the small dimension of the 
periodic cell (ℓ is of the order of few ݉ߤ), and since the average flow velocity is well below the mm/sec range, 
the flow regime is strictly laminar (10ିଷ ൑ Re ൑ 1), so that the (unperturbed) single-phase flow of the carrier 
fluid  can be computed by solving the linear Stokes problem in place of the Navier-Stokes equations. Also, as 
a further consequence of the low value of the Reynolds number, the perturbation induced by the presence of 
the lateral walls of the channel decays swiftly when moving towards the core of the channel, so that the flow is 
spatially periodic onto the same lattice defined  by  ܍ଵ and ܍ଶ. By this property, the solution of the Stokes flow 
through the structure can be obtained by taking the basic unit cell as reference domain and imposing periodic 
boundary conditions for the velocity components at corresponding points of the opposite edges.   Panels -(b) 
and -(c) of Figure 1 show the flow structure for two different values of the obstacle diameter for a pressure 
gradient directed along the device walls. Note that, because of the presence of these lateral walls, a global 
constraint imposing a  vanishing average value of the ݕ velocity component must be enforced (Cerbelli, 2012). 
The black lines depict the structure of the flow streamlines. The contour plot represents the local velocity 
magnitude, normalized with respect to the cell-averaged value of the flow velocity. Note how the bigger-sized 
obstacle depicted in Panel -(b) of the figure induces large velocities in the gap between adjacent obstacles, 
whereas the flow structure is almost uniform both as regards the streamline structure and the velocity 
magnitude in the case of the tiny obstacle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) Typical obstacle lattice geometry of a DLD microseparator. (b) and (c): unperturbed laminar flow 
in the periodic cell of the structure for different size of the obstacle.  
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This much established for the structure of the single-phase flow of the carrier fluid, the transport features of 
the suspended particles can be tackled by enforcing some simplifying assumptions (see Cerbelli et Al., 2013) 
• The suspension is diluted, so that particle-particle interactions can be neglected 
• Overdamped regime applies, so that the particle velocity in the bulk of the fluid is equal to the velocity of the 

unperturbed flow at the particle center-of-mass. 
• A hard-wall repulsive model is considered to account for the hydrodynamic interactions occurring during  the 

fluid-mediated collisions between the particles and obstacles. Specifically, it is assumed that no interaction 
occurs until the surfaces come into contact with each other. At the particle-obstacle contact, it is assumed 
that the obstacle annihilates the velocity component normal to the touching surfaces, while leaving the 
tangential velocity unaltered. 

   
Thus, for a particle of assigned size, the trajectory through the obstacle lattice is composed by a piecewise 
alternated sequence of flow streamlines and arc of circles, whose radius is equal to the radius of the physical 
obstacle plus the particle radius. Figure 2 shows the implementation of this transport model under the 
assumption that Brownian motion due to thermal fluctuations can be neglected (deterministic motion) for 
particles of different size. Two qualitatively different transport modes can be observed. The smaller particle 
displays a “zig-zag” type of motion, whose average direction is aligned with the average flow direction. The 
bigger particle is instead systematically displaced by the collisions with the obstacles, so that its average 
direction is collinear with the lattice vector ܍ଶ. Between these particle dimensions, there exists a particle size 
(referred to as critical) such that the particle will approach the obstacle in the direction exactly orthogonal to 
the touching surfaces. According to the simplified model described above, the particle of critical size comes to 
a complete stop, and only the presence of fluctuations can cause the particle to depart from this (unstable) 
equilibrium position.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Qualitatively different trajectories of particles of different size according to the deterministic transport 
model. The smaller (blue) particle undergoes a “zig-zag” motion, whereas the bigger (red) particle is 
systematically deflected at each obstacle collision. The green thin lines depict the underlying streamline 
structure of the unperturbed flow of the suspending fluid (see main text for details). 

However simple in its formulation, the deterministic transport model described above accounts for the 
mechanism that constitutes the driving force for the size-based (label-free) separation of multi-dispersed 
particle suspensions enforced in DLD-based microseparators (Cerbelli et Al., 2015). Here, the particle 
suspension is continuously introduced  through a focused stream at the device inlet, and two sub-populations 
of particles are collected at different locations at the device outlet, each containing particles of size above and 
below the critical particle size, respectively. It is worth underlining that the critical particle parameter is 
ultimately defined by the geometry of the unperturbed single-phase flow of the carrier fluid, and thus, by the 
obstacle lattice geometry. 
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The purely deterministic model described above, which was first proposed in a qualitative framework in 
(Huang et al, 2004), has been generalized in a series of articles to include the action of particle diffusion, 
whose effects had been experimentally observed. The results of these theoretical body of work can be 
summarized by stating that at lengthscales larger that the characteristic cell size, the collective behavior of the 
suspended particles can be accurately described by an effective advection-diffusion equation, ∂Φ∂ݐ + ܅ ⋅ Φߘ = ߘ ⋅ (॰ ⋅ Φ) (1)ߘ

 
where Φ is the large-scale particle number density (i.e. averaged over a sufficiently large number of 
elementary cells), ܅ is the large-scale effective particle velocity, and where ॰ is the effective dispersion 
tensor. Here, both the transport parameters ܅ and ॰ depend on the flow structure as well as on the particle 
size. It is worth observing that these parameters can be computed by the cascade solution of a scalar and a 
vector-valued elliptic boundary value problem defined on the elementary cell of the domain (Cerbelli et al., 
2013). Alternatively, the same quantities can be derived by considering ensemble averages of advecting-
diffusing particles which evolve according to the stochastic differential equation 
௣ܠ݀   = ݐ݀(௣ܠ)௙ܝ + (2) ߦ2ࣞ݀√

 
where ܠ௣ is the position of the center of mass of the particle, ܝ௙ is the velocity of the single-phase flow of the 
suspending fluid, ࣞ is the particle diffusion coefficient, and where ݀ߦ represents the (vector-valued) increment 
of a Wiener process characterized by zero mean and variance proportional to √݀ݐ. Equation (2) is 
complemented by reflecting conditions at the boundary of the solid obstacles (see Cerbelli, 2012, for a 
detailed discussion). Based on the transport parameters ܅ and ॰, the separation performance and the 
separation resolution associated with the standard (i.e. continuous steady-state) implementation of DLD in 
microfluidic bumper arrays can be predicted (Cerbelli, 2015). In steady-state continuous separations, the 
parameter controlling separation efficiency is the ratio ୄܹ ∥ܹ⁄ , where ୄܹ and ∥ܹ are to components of  the 
average particle velocity normal, and parallel to, the device walls, respectively. This ratio defines the average 
migration angle of the particle current with respect to the average direction of the carrier flow. Because ܅ 
markedly depends upon the particle diameter, size-based separation can be realized, since a generic size-
dispersed current of particles naturally separates into different streams, each characterized by a specific range 
of particle sizes. Besides, the excluded volume model for particle transport described above also predicts that 
the magnitude ܹ =∥ ܅ ∥, also referred to as particle mobility, depends sensitively on the particle size. This 
effect can be exploited whenever transient conditions in place of a steady-state setting for the separation 
process are enforced. The idea of performing a transient separation in a DLD device has recently been 
suggested in the simplified context where the velocity field ܝ௙ driving the particle in the overdamped regime is 
uniform (e.g. this condition could be considered as an approximation of a body-volume force driving the 
particle in a quiescent viscous fluid filling the gaps between the obstacles). In what follows, we explore 
whether this effect can be observed even in the presence of pressure-driven flows, which constitute the most 
common, straightforward, and flexible implementation of DLD based separation processes.   

3. Results and discussion 

As a case study, consider the obstacle lattice represented in Figure 1-(b), defined by an obstacle diameter 
equal to half of the cell width, and to a lattice angle ߠ௟ = tanିଵ(1/3). For this specific geometry, the critical 
radius corresponding to the structure of the laminar flow through the periodic array (computed by analyzing 
the behavior of particles of increasing size and determining the particle diameter marking the transition 
between the qualitative paths depicted in Figure 2) falls in the interval 0.189 < ௣௖/ℓݎ < 1.90, ℓ being the length 
of the cell edge. In place of the commonly used continuous feeding of the particle suspension, we here 
consider the situation where a certain number of particles, say ௣ܰ, are initially placed in a circular area of 
radius ܴ଴ within the lattice. Starting from this initial condition, the suspending fluid is set in motion by a 
pressure drop and particles are dragged by the surrounding fluid through the lattice of obstacles. Assuming 
that the cell size is in the order of 10 ݉ߤ, and that the average velocity of the carrier flow is in the order of tens 
of ݏ/݉ߤ, we computed the particle diffusivity appearing in Eq. (2) by taking the particle Péclet number equal to 10ଷ for the particle possessing critical size. In these conditions, we set the initial size of the circular particle 
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clump equal to 10ℓ, and placed an equal number ௣ܰ = 10ଷ of particles of dimensionless size ݎ௣/ℓ =0.17; 0.18; 0.186  (represented as purple, green and blue dots, respectively) randomly distributed within the 
circular area centered at the origin of the coordinate axes. 

Figure 3: Migration of particles of different size in a DLD lattice under transient conditions. Particles of different 
characteristic size are initially placed in a circular clump at the origin of the coordinate axes and their positions 
recorded at fixed times (see main text for details). 

Figure 3 shows the evolution of the particle ensemble at different times. Here lengths and times are made 
dimensionless by taking the cell edge ℓ as reference length and the characteristic time ߬ = ℓ/ܷ as reference 
time. The initial clump of particles of different dimensions separates into three swarms, each characterized by 
a specific particle size. The center of mass of each particle swarm moves with an effective velocity ܅ which 
depends on the particle size both as regards its direction and its magnitude. The data clearly show that a 
complete separation of particles whose relative size differs by less than 10% is achieved after order 10ଷ rows 
of obstacles (compare the relative positions of the particles ensembles at t=1400). It is worth observing that in 
a corresponding continuous operation, where only the direction of the effective velocity provides the driving 
mechanism causing the size-based separation of the suspended particles, particles of size ݎ௣/ℓ = 0.17 
(purple) and ݎ௣/ℓ = 0.18 would exit a device composed of 10ଷ obstacle rows still unresolved. Thus, the data 
suggest that using DLD microseparators under transient in place of continuous (steady-state) conditions could 
improve the separation performance in that both the direction and the mobility dependence of the effective 
particle velocity is exploited.     
The phenomenon illustrated in Figure 3 is generic, meaning that for each assigned lattice there is a range of 
particle dimensions where the dependence of particle mobility on size becomes sensitive. This range typically 
brackets the critical particle size and extends to radii values that depend on the specific geometry of the 
lattice. Thus, running DLD devices under transient conditions fully exploits the size dependence of the 
effective velocity on particle size, meaning that particles that share similar migration angles can be separated 
by their different response in terms of residence time. An immediate consequence of the results suggested by 
the transport model proposed in this article is the potential use of DLD arrays to identify the Particle Size 
Distribution of a multi-dispersed suspension. This could be accomplished by running a chromatographic 
experiment on a suspension characterized by a particle mixture possessing a known particle size distribution, 
and using the dispersion structure as standard baseline to determine the peaks of particle concentration at 
assigned times. 

4. Conclusions 

DLD arrays are currently being used for the continuous separation of size-dispersed population of particles, by 
running the process under steady-state conditions. A theoretical model enforcing overdamped regime for the 
fluid-particle interaction and a simple hard-wall repulsion for the particle-obstacle collisions predicts that not 
only the particle migration angle, but also particle mobility depends markedly on particle size. Based on this 
observation, a proof-of-concept for the potential use of DLD arrays under transient conditions has been 
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proposed, which shows that separation resolution could be significantly improved using the same device 
geometries that are designed for the time-continuous operating conditions.   

References 

Adrover, A, Cerbelli, S., Garofalo, F., Giona, M., 2009, Convection-dominated dispersion regime in wide-bore 
chromatography: A transport-based approach to assess the occurrence of slip flows in microchannel, 
Analytical Chemistry, 81(19) 8009-8014. 

Cerbelli, S., 2012, Separation of polydisperse particle mixtures by deterministic lateral displacement. The 
impact of particle diffusivity on separation efficiency. Asia‐Pacific Journal of Chemical Engineering, 7, 
S356-S371. 

Cerbelli, S., Giona, M., & Garofalo, F., 2013, Quantifying dispersion of finite-sized particles in deterministic 
lateral displacement microflow separators through Brenner’s macrotransport paradigm. Microfluidics and 
Nanofluidics, 15(4), 431-449. 

Cerbelli, S., Garofalo, F., & Giona, M., 2015, Effective dispersion and separation resolution in continuous 
particle fractionation. Microfluidics and Nanofluidics, 19(5), 1035-1046. 

Garofalo, F., Adrover, A., Cerbelli, S., Giona, M., 2010, Spectral characterization of static mixers. The S-
shaped micromixer as a case study, AIChE Journal, 56(2), 318-335. 

Huang, L. R., Cox, E. C., Austin, R. H., & Sturm, J. C., 2004, Continuous particle separation through 
deterministic lateral displacement. Science, 304(5673), 987-990. 

Holm, S. H., Beech, J. P., Barrett, M. P., & Tegenfeldt, J. O., 2011, Separation of parasites from human blood 
using deterministic lateral displacement. Lab on a Chip, 11(7), 1326-1332. 

Loutherback, K., D'Silva, J., Liu, L., Wu, A., Austin, R. H., & Sturm, J. C., 2012, Deterministic separation of 
cancer cells from blood at 10 mL/min. AIP advances, 2(4), 042107. 

McGrath, J., Jimenez, M., & Bridle, H., 2014, Deterministic lateral displacement for particle separation: a 
review. Lab on a Chip, 14(21), 4139-4158. 

Sun, T., Chance, R. R., Graessley, W. W., & Lohse, D. J., 2004, A study of the separation principle in size 
exclusion chromatography. Macromolecules, 37(11), 4304-4312.. 

Wunsch, B. H., Smith, J. T., Gifford, S. M., Wang, C., Brink, M., Bruce, R. L., ... & Astier, Y., 2016, Nanoscale 
lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nature 
nanotechnology, 11(11), 936. 

984




