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Main-stream evaluations of failed policies are geared towards finding a limited set of factors that are deemed to have 
caused the problem. This is particularly so in the case of high-profile public projects such as in technology and 
infrastructure development. While justified from the point of political accountability, this article presents an alternative 
view. Following insights from evolutionary economics and complex systems about the embedded nature of 
technological systems and the role of chance next to purposeful planning, we demonstrate that traditional policy 
evaluations are misguided when geared towards simplistic cause-and-effect relations. To this end, we analyze the 
reasons for the mixed results in the Dutch high-speed railway case. The findings show that, contrary to popular 
opinions in the political domain, technological progress did take place. However, misalignment between social practices 
and technological systems masked that progress.  
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1. Introduction

High-speed railway projects are important in many ways. They enable people to travel longer 
distances in shorter time spans, which promotes economic activities. Cities that are connected to 
high-speed networks often benefit in terms of hub functions. High-speed railways are 
technologically advanced. It requires quality engineering to run a full train safely at 300 km/hr. 
High-speed railways also carry prestige and are an important means of profiling a country or even 
people such as ministers. Japan, France and Germany, and more recently China, have all 
embarked on such projects for such reasons. When all components fit together, high-speed 
railways constitute a valuable and durable infrastructure. 

Deciding, planning and constructing high-speed railways can take decades. Meanwhile, 
many things may change; e.g. technologies may have to mature more, passengers may have 
changed their behavior, and alternative modes of transport may have cropped up. There are many 
hurdles to take before the first shovel hits the ground and many more before the first train runs. 
When the components don’t line up the prestigious project can turn into an expensive problem. 
This is the case for the high-speed railways in the Netherlands, which ultimately costed almost 
twice as much as planned at the start. The Dutch government started thinking about high-speed 
rail in the Netherlands at the end of the 1970s. In the early 1990s the first concrete steps were 
made towards building of a high-speed rail; the so-called Hoge-SnelheidsLijn Zuid (high-speed 
railway link south or HSL-Zuid). After more than 20 years of deciding, building and constructing 
the first high-speed train, called Fyra, started revenue service on December 9th 2012. During the 
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weeks to follow many (safety) incidents occurred after which the rail operators decided to take the 
Fyra-trains off the track on January 17th, never to return anymore. 

When things go wrong, as such mega-projects often do, common political sense dictates 
that it is time to evaluate and to pinpoint the ones deemed guilty for the mistakes. The logic of 
accountability in the public realm holds that, ultimately, responsibility can be traced to one factor 
or actor (cf. Teisman, 2005). Traditional ex-post policy evaluation serves two questions: whether 
the policy has reached its target, or whether the people working in a certain policy field or public 
organization have delivered what they were supposed to deliver (Parsons, 1995). In addition, there 
is also a tendency to understand that different components of the project as related but essentially 
discrete elements. In practice, policy evaluation runs into a collection of structural problems, such 
as establishing causality (Noordegraaf & Abma, 2005; Bressers, 2011), establishing consensus 
over what constitutes a ‘good outcome’ because of subjective appraisal (Bressers & Hoogerwerf, 
1995), and the fact that any policy is faced with resource restrictions that can ruin the intended 
outcome (Parsons, 1995). Policy evaluations are often carried out for control and accountability 
purposes, which means that learning from unfavorable outcomes takes a backseat (cf. Guba and 
Lincoln, 1985 for a critique). When it comes to major public investments such as in 
infrastructure, policy evaluation is often only carried out when something has gone wrong and the 
evaluation is inevitably geared towards finding and blaming the ‘guilty’ person, who can then be 
punished accordingly (cf. Kerseboom, 2008, p. 7; KiM., 2009). The Dutch case is no exception, as 
exemplified by the following conclusions from the formal parliamentary evaluation report: “The 
intended service has not been established because other interests prevailed over providing the 
service. The State was too focused on monetary gains and NS was too focused on retaining its 
strategic position. Not only did that hinder passengers’ interest, it also meant an underutilization 
of the HSL-Zuid.” (Parlementaire Enquêtecommissie Fyra, 2015, p. 4) 

Such statements are understandable from a legal or political point of view – the derailment of 
those projects provides an excellent opportunity for the opposition to show the world they had 
been right all along. While such evaluations fit comfortably with the reality of politics, they don’t 
deliver a genuine insight in the dynamics and mechanisms that govern such programs and 
projects. Indeed, the goal of establishing accountability could even hinder a better understanding 
of the actual causality behind the unfavorable outcome (cf. Verweij, 2015). The traditional policy 
evaluation perspective that tries to pinpoint the single cause for the problems ignores the 
configurational nature of socio-technological systems. That is, several socio-technological systems 
jointly make up the success or failure of programs and projects. Arguably all major infrastructural 
projects, and especially high-speed railway projects, take a long time to be realized from the first 
thoughts to the actual construction and operation. During the project many technologies will 
(co-)evolve as well as causing the projects to adjust accordingly to remain successful. 

In this article, we will contrast the classical view of policy evaluation to an alternative one that 
builds on insights from evolutionary (economic) theories and the complexity sciences, with 
particular attention to technology transitions. That is, to understand the evolution of technological 
configurations we use a perspective in terms of technological transitions. The main question is: 
what will a complexity-informed evaluation provide in comparison to traditional accountability 
measures? To this end, we will focus on the development of the Dutch high-speed railway project, 
which – by all accounts – is considered a failure.  



50 

Complexity, Governance & Networks - Special Issue: Complexity Innovation and Policy (2017) 48-62  
Peter Marks, Lasse Gerrits: Evaluating technological progress in public policies: the case of the high-speed railways in the
Netherlands 
DOI: http://dx.doi.org/10.20377/cgn-42 

University of Bamberg Press 

2. Technological transition theory

The general idea behind technological transitions (TT) (Geels, 2002; Rip & Kemp 1998; 
Kemp, Rip & Schot, 2001) is that analyzing technology implies understanding them as 
configurations, i.e. the alignments of a heterogeneous set of elements (e.g. Bijker, 1995; Moody, 
2009; for an extended argument). Configurations are logically connected with the rest of society; 
e.g. it is embedded in items such as skills, routines, patterns of behaviors. In other words: “[…] 
societal functions are fulfilled by sociotechnical configurations.” (Geels, 2002, p. 1258) 

Technological transition requires a change from one configuration to the other. Changing 
configurations means not only substituting technology but also all other elements in the 
configuration that are mutually connected and aligned. As long as there is no proper match 
between the established regulations, infrastructure, user practices, et cetera, new technologies will 
have a hard time breaking through as they are mismatched with the established socio-institutional 
framework (Freeman & Perez, 1988 in Geels, 2002, p. 1258). In other words, all components need 
to be lined up correctly for socio-technological systems to evolve. Stability of such configurations 
is the result of the linkages between the heterogeneous elements, which are the result of activities 
of social groups producing those elements and linkages (Geels, 2002, p. 1259) 

To understand the coordination of the activities of the different groups the TT-perspective 
builds on the concept of technological regimes of Nelson & Winter (1977; 1982); i.e. coordination 
is the outcome of organizational and cognitive routines. A technological regime is formed if the 
organizations, and the actors involved, share similar routines, i.e. routine-based behavior. 
Technological regimes create stability because they guide the innovative activity towards 
incremental improvements along trajectories. Rip & Kemp  add to the technological regime that it 
is the “rule-set or grammar embedded in a complex of engineering practices, production process 
technologies, product characteristics, skills and procedures, ways of handling relevant artefacts 
and persons, ways of defining problems.” (1998, p. 338) 

In other words, the rules are not only embedded in the engineering practices, but also in 
the corporate governance structures, manufacturing process and product characteristics. This 
means many social groups are part of the community and as such the possible trajectory of the 
technology is influenced by many users beside engineers, i.e. policy makers, societal groups, et 
cetera (Kemp, et al., 2001, pp. 272-273). “Regimes are outcomes of earlier changes and they 
structure subsequent change.” (Rip & Kemp, 1998, p. 338) As such ST-regimes may change, but 
do so incrementally. This sociotechnical regime provides orientation and coordination to the 
activities of the involved actors. The sociotechnical regime then functions as a selection and 
retention mechanism (Nelson & Winter, 1982) providing stability of the respective sociotechnical 
configurations. 

The sociotechnical regimes function within the context of the sociotechnical landscape. 
These landscapes constitute the wider factors relevant for the respective ST-regimes, and at this 
macro-level the landscapes change extremely slowly. More radical innovations occur at the micro-
level of local practices, i.e. the so-called niches (Rip & Kemp, 1998, p. 338; Kemp, et al., 2001, p. 
275). There is feedback surging through the nested hierarchical levels. The meso-level of ST-
regimes accounts for stability of existing technological development and the occurrence of 
trajectories. The macro-level of landscape consists of slow changing external factors, providing 
gradients for the trajectories. The success of a new technology is governed by what happens 
within the niche, but also by the developments in the sociotechnical regimes and landscape; e.g. 
changes at the landscape level may put pressure on the sociotechnical regime creating an opening 
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for a new technology niche (Geels, 2002, p. 1261). In short, technological transitions occur as the 
outcome of linkages between developments at multiple levels, but also at multiple technologies. 

Alignment between levels creates a window of opportunity for successful technological 
transitions; i.e. all components need to be lined up correctly – something that can only be partially 
managed because certain elements are relegated outside of policy control. This is the main theme 
in understanding technological change. The transition perspective can be used to evaluate 
policies: within the larger policy landscape different regimes play a coordinating role for different 
policies or policy instruments to be successfully implemented. For the regimes to function as 
coordination all components and networks must be lined up (Bressers, 2011). Systems can keep 
each other going but are also highly dependent on each other, i.e. when one misfires, others will 
misfire too. For a better understanding of why the Dutch high-speed railways project failed, it is 
necessary to assess how and to what extent all systems components aligned. 

Data for this research was collected from multiple archival records: 1191 newspaper articles 
about the case retrieved from the Nexis-database; 40 policy papers issued by the Ministry of 
Transport; 28 policy briefs issued by the Parliament; and 14 scientific and professional reports 
published by third parties (more details about the data can be found in Gerrits and Marks, 2014). 
In addition, we consulted approximately 50 websites.  

3. Socio-technological transitions in the case of high-speed railways in the Netherlands

The following sections will describe the formation of the landscape and the evolution of 
various niches that, together, lead to the emergence of high-speed railway technology in general, 
and its deployment in the Netherland specifically. This overview is derived from a more extended 
reconstruction that is available upon request.  

Figure 1 - Historical build-up of the high-speed rail landscape 
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3.1 Setting the standard: landscape formation 

The development of the Dutch high-speed railways is embedded in the landscape of (high-
speed) railways that evolved from 1899 into the standard-setting Shinkansen service between 
Tokyo and Osaka that opened in 1964. This line featured continuously welded rails in a 25% wider 
gauge designed for 250 km/h. Figure 1 shows the evolution towards the standard-setting 
Shinkansen that has had a defining impact on the technological high-speed railways landscape as 
it is today. The core elements of all such systems are a set of high-speed rolling stock and a 
dedicated high-speed line to accommodate that rolling stock. The track is to be continuously 
welded in order to reduce vibrations and misalignment, and to be bolted on semi-continuous 
concrete bedding for stability. The 25kV AC power is provided via the overhead catenary, tight 
radii are to be avoided, and level crossings are not allowed. The last standard-setting came after 
the early years of the Shinkansen, when the train’s nose changed from a bullet shape to the 
tapered shape to reduce air resistance when traveling at high speeds and to deal with the shock 
waves when entering tunnels. 

3.2 Short distance high-speed railways: regime definition 

The Netherlands wasn’t a front-runner when it comes to high-speed railways. The 
development of the French high-speed trains or Train a Grande Vitesse (TGV) in 1972 sparked a 
discussion among Dutch politicians, civil servants and Netherlands Railways about having high-
speed trains, too. Thus in 1973 the first proposal by the Dutch government was made to connect 
Amsterdam through Rotterdam with Belgium, the so-called AmRoBel-plan. The idea was 
extended with proposals to improve national and international rail traffic in an attempt to offer a 
viable alternative to long distance road and air traffic. The formal planning procedure was started 
in 1987 and encompassed three major studies concerning the creation of a so-called corridor 
running from Amsterdam in southerly direction to Rotterdam (the Netherlands) and Brussels 
(Belgium), i.e. the HSL-Zuid. The studies encompassed a formal feasibility study, the 
environmental impact assessment of all possible variants, and the route decision. There were 
multiple alternatives for track alignment. However, in line with the landscape development 
mentioned above, a new and dedicated track that would be as short as possible (i.e. from Schiphol 
to Rotterdam in a fairly straight line), that would allow a maximum speed of 300 km/hr was the 
selected option in 1993. What was really new about the HSL-Zuid compared to all other high-
speed rail lines that time was that it is essentially a short-distance high-speed connection; i.e. the 
dedicated track is 212 kilometers long of which only 85 kilometers in the Netherlands and 35 
kilometers in Belgium allow for high-speed, and the line has several stops, from north to south: 
Amsterdam Central Station, Amsterdam Airport, Rotterdam Central Station, Antwerp Central 
Station, and Brussels Midi. Due to these factors the average speed on the line is 120 km/h, far 
below the maximum design speed. 

The socio-technological innovation of short-distance high-speed rail travel will function as 
the coordinating regime for the necessary technological innovations in the various niches. Within 
this regime, the most important socio-technological innovations are: 1) public-private partnership; 
2) building technology; 3) safety and interoperability; 4) market demands; 5) rolling stock. We will
analyze these different socio-technological innovations since after the decision was made in 1993 
to go for the shortest route possible allowing speeds of 300 km/h until the collapse of high-speed 
service on HSL-Zuid in 2013. 
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3.3 Niche 1: public-private partnerships 

After the initial decision where the HSL-Zuid would be build, the ministry of Transport had 
to decide how and in which manner to finance the building. Inspired by the developments of 
privatization in UK in the 1970s, privatization of public tasks had become increasingly accepted in 
continental Europe as a manner to improve fiscal deficits, but also as a requisite to join the 
European Union (Bortolotti & Milella, 2006). The wave of privatization in transport caused 
deregulation and privatization in airlines, ports and airports in several European countries 
(Phang, 2009, p. 23). The privatization idea took off in the Netherlands at the end of the 1980s and 
meant that new forms of financing were now viable; i.e. tendering of tasks and public private 
partnerships in projects. “It was clear at the time that there were insufficient public funds 
available to meet the various desires, so private contributions to public projects were considered 
as a possible solution.” (Koppenjan, 2005, p. 136) The Dutch government made steps in 
corporatizing certain state owned organizations and putting them at more distance, but were 
hesitant about full privatization (The Economist, 2002). 

Initially, the construction costs were projected at approximately 3 billion Euros. Congruent 
with the discovery of the possibilities of private market mechanisms, the Ministry of Transport 
aimed at a public-private partnership with construction and financial companies to share the costs 
and benefits of the project. The minister expected € 600 million to be financed by private parties. 
After some attempts to get parties interested in financing, building or operating parts of the HSL-
Zuid either completely or in some form of public private collaboration, the Ministry decided that 
(a) tracks, catenary, noise barriers and signaling systems would be put to tender in DBFMO 
contracts (Design, Build, Finance, Maintain & Operate), (b) the construction of the foundation 
and track bed to be put into six separate tenders on the basis of D&C (Design & Construct) 
contracts, and that (c) the concessions to operate the HSL-Zuid would be tendered out. 

Figure 2 - Trajectory of niche-cumulation for breakthrough tendering 
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The value of the various DBFMO-contracts added up to around € 700 million and another € 
700 million was needed for the maintenance fee for 30 years. High construction risks in 
conjunction with a risk-averse stance from the private companies lead the minister to decide that 
the State would build the foundations, tunnels, et cetera through traditional design & construct 
contracts. This would cost around € 2.7 billion, split over the six separate lots. The costs for 
building the foundation eventually run as high as € 1.9 billion, which is € 250 million higher than 
estimated. This was due to builders having strong negotiation positions by having formed illegal 
cartels.  

The tendering process for the operation concession turned out to be even messier because 
the Ministry had initially allowed the previously state-owned Nederlandse Spoorwegen (NS) to 
make an uncontestable bid for the contract. This bid was declared inadmissible because the 
Minister deemed it too low. A public tendering process was started but political pressure from the 
House of Representatives forced the Minister to grand the concession to NS – this time in a 
consortium with KLM (Royal Dutch Airlines) and Schiphol international airport. This opportunity 
was then retracted because it trespassed the European regulations for the single railway market. 
Hence the public tender was reopened. Four parties made it to the final round. Ultimately, NS 
won the concession by outbidding everyone else with an offer of € 178 annually, € 78 million 
higher than the next bidder. In the final negotiations, the annual fee was lowered to € 148 million 
annually because the Ministry feared that NS would go down if it would stick to its original offer. 
The final amount was still considerably higher than what other operators had offered.  

3.4 Niche 2: building techniques 

The construction of the foundation encountered some persistent problems, forcing builders 
to innovate their building techniques: (1) the soil in the Netherlands is prone to subsiding, while 
fast trains require stable and level tracks, and (2) the track was aligned through a more or less 
pristine natural area called the Green Heart, for which a large tunnel had to be built in order to 
preserve its natural state. However, there was no prior experience with building a large tunnel 
through such suboptimal ground conditions.  

Nearly the full stretch of the HSL-Zuid is founded on piles of reinforced concrete, on top of 
which are concrete slabs to which the rails are attached creating a continuous and level track. The 
curves have a minimal radius over 4500 meters and bank to enable high speeds. Some wide water 
bodies needed to be crossed, especially the Hollands Diep, with very long and rigid bridges to 
keep the gradient under the required 2 percent so trains can go up to 300 km/h while crossing the 
bridge without dangerous vibrations.  High speed trains require considerable energy to run. The 
standard current (1500V DC) wouldn’t suffice so a separate energy infrastructure for 25kV AC 
needed to be build. The technologies required for these points, in combination with the build of 
the Green Heart Tunnel (next sections), meant that the maximum speed could be raised from the 
conventional (Van den Brink, 2002, p. 22). 

In the densely populated country, tunnels had to be built in addition to level tracks and 
bridges. A 4 kilometer long tunnel between Rotterdam and the northern outskirts of the city was 
built using traditional cut-and-cover technique. The tunnels under the rivers Oude Maas and 
Dordtsche Kil both consisted of immersed tubes of reinforced concrete. However, the tunnel 
through the Green Heart was to be built under strict environmental conditions; no damage to the 
landscape was allowed and most of the building nuisance had to be avoided. As such the 
traditional methods would not suffice. Hence the 7 kilometer long tunnel had to be drilled using a 
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Tunnel Boring Machine (TBM). The evolution of the TBM used for the HSL-Zuid is depicted in 
figure 3. The Green Heart Tunnel had to be built in a sand layer, which is very non-cohesive soil 
that falls apart when digging (Crok, 2002, p. 32). Due to this geology and to counter the ground 
water pressure a Slurry Shield type TBM was to be used. The French-Dutch consortium of 
Bouygues/Koop developed the TBM Aurora specifically for the ground situation of this project. 
The Green Heart Tunnel was only the fifth tunnel in the world that was built using a Slurry Type 
TBM, but the Aurora was unique because of its massive diameter of 14.87 meter, creating the 
biggest single tube tunnel in the world at the time. Aurora would dig 2 meters and then tunnel 
segments of two meter length would be placed, after which the machine would dig for another 
two meters pushing itself forward on the placed tunnel segments. After some initial delays, the 
Aurora was able to drill quite rapidly and made up for the time lost by drilling more meters per 
day (20 meters on average) than originally planned. As such the drilling process was concluded 
before the agreed deadline; which made it one of the most successful innovations of the project. 

Figure 3 - Trajectory of niche-cumulation for breakthrough Large Slurry Shield TBM 
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3.5 Niche 3: Safety and interoperability 

Once the foundation and other infrastructures were completed a safety system that would fit 
the requirements of high-speed rail would have to be installed. Such safety systems have been in 
development since 1901. In the 1950s and the following decades, innovations in radio-based 
signaling and innovations in traction technology that enabled faster trains, lead countries to 
develop so-called continuous cab signaling systems. At the end of 1980s, there were 14 different 
control systems in use across Europe. These control systems all had different specifications and as 
such were incompatible. This meant that trains passing borders from one country to another 
needed to have multiple systems installed or change locomotives, the latter being the common 
option. This was impractical because international services were becoming popular. Changes of 
locomotives cost time: multi-system locomotives were overly complex and not as well-developed 
as they are now. In addition, it is near impossible to read exterior light signals communicating 
track states at high speeds. In 1989, a working group including Transport Ministers created a 
master plan for a trans-European high-speed rail network, in which a European Train Control 
System (ETCS) was to replace the incompatible national systems, was suggested. Early 1990s, this 
led to the creation of the Technical Specifications for Interoperability (TSI). The baseline for 
technical specifications were published and tested as part of the European Rail Traffic 
Management System (ERTMS) by six railways since 1999. ERTMS is not a product but defines the 
TSI such that any company can develop ERTMS devices whilst maintaining interoperability. The 
idea is that equipment is mainly built into the train and less at the trackside. At levels two and 
three the communication between train, track and central post are communicated by GSM 
reserved for the railways. The first ERTMS specifications were published in June 2000, and have 
been amended since then to fit the needs of railway companies and administrators. 
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Figure 4: Trajectory of niche- for breakthrough European Train Control System 
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3.6 Niche 4: Market demands 

The 1993 decision to build the shortest alignment through the Green Heart was partially 
based on the estimated amount of passengers who would be offered a proper alternative to flying 
or driving. HSL-Zuid was seen as a proper competitor to short to medium distance air transport 
services because of the lower terminal times and the ability to reach directly into the city centres 
(Rodrigue, 2013). 

However, the Dutch government did not anticipate that the European Open-Skies treaty of 
1992 would allow any airline to fly anywhere without a government approval. This regulation 
caused the entry of many low-cost carriers (LCC) in the European market. This unforeseen 
development had a major impact on the future of the HSL. At the start of the project the idea was 
that HSL-Zuid would service 10 million passengers that otherwise would fly from Schiphol 
airport. However, this idea became unrealistic due to companies such as EasyJet and Ryanair 
entering the Dutch market - not only via Schiphol, but also via regional airports like Rotterdam-
Den Haag Airport. Because these airports where in the vicinity of relatively large cities and 
because they also provided quick boarding times and offered good alternatives for short European 
trips, i.e. the market that was assumed to be the domain of HSL-Zuid. 

In addition, it also became clear that the expected travelling times between Amsterdam 
and Brussels would be longer due to calculation errors on the Belgian section of the track and 
because certain track upgrades between Antwerp and Brussels had been postponed until 2012. In 
2004 McKinsey reported that due to these developments the passenger volume would probably be 
17% to 32% lower than expected in the concession agreement from 2001. 

Revenue service between Amsterdam and Rotterdam started on September 7, 2009, with 
operator NS using Traxx locomotives and coaches, running at a maximum speed of 160 km/h 
because the dedicated V250 trains were still not ready to run. The travelling time between 
Amsterdam and Rotterdam was reduced by 20 minutes due to the almost straight route and the 
somewhat higher speed. Once the Thalys and V250-Fyra would start servicing the travelling time 
could even be further reduced. However, ticket prices were significantly higher than regular train 
services as NS needed to get some returns on its exceptionally high concession fee; the price hike 
was 60%. As it turned out, passengers were not willing to pay the surcharge on top of the fare 
price for each single trip between Amsterdam and Rotterdam. Consequently, NS lowered the 
prices of the tickets but that didn’t attract much more passengers. January 31st 2011 NS again 
lowered the surcharge because the service was now running at a loss and needed more 
passengers. Also the regular train service between Amsterdam and Brussels was taken out of 
commission as the high speed rail service took over that service. All to no avail as passenger were 
still not eager to get into the more expensive high-speed rail. After the V250-Fyra trains were 
taken out of service and no alternative high-speed trains available, the former slower service 
between Den Haag and Brussels was restored using Traxx locomotives with coaches. A very 
modest surcharge was asked for the 20 minutes travel time reduction. Since then the amount of 
passengers on HSL-Zuid has picked up. 

3.7 Niche 5: Rolling stock 

The standard set by the Shinkansen, which initially only had a high speed of 210 km/h, made 
it possible for manufacturers to evolve the technology for trains to run at 300 km/h and even 
higher. However, there are only a handful of manufacturers that are able to mass produce stable 



59 

Complexity, Governance & Networks - Special Issue: Complexity Innovation and Policy (2017) 48-62  
Peter Marks, Lasse Gerrits: Evaluating technological progress in public policies: the case of the high-speed railways in the
Netherlands 
DOI: http://dx.doi.org/10.20377/cgn-42 

University of Bamberg Press 

platforms of high-speed technology for the same reason as there are few aircraft manufacturers: 
the development cost of new models are immense. The first decades after the launch of the 
Shinkansen very few manufacturers developed and built high-speed trains. Recently, more 
companies have entered the market. 

By spring 2002 the new concession holder started an international tender for high-speed 
rolling stock; i.e. 23 high-speed trains. The most important criteria were ‘maximum speed of 220 
km/h’, ‘price per seat’ and ‘between 450 and 550 seats per train’. Four manufacturers submitted a 
proposal; French Alstom, Canadian Bombardier, German Siemens and Italian AnsaldoBreda. Of 
these four only Alstom and Siemens had actually developed and built high-speed trainsets 
themselves. Bombardier proposed regular locomotives made suitable for higher speeds. These 
three manufactures offered modifications of existing stock because designing a new train from 
scratch for such a small series would not make an interesting business case. AnsaldoBreda was 
the only manufacturer that offered brand-new stock. However, AnsaldoBreda had only built high-
speed trains that were designed by other manufacturers, so this would be their first in-house 
design. 

In 2003, the Minister of Transport announced that she would hold NS to their contracted 
travel time between Amsterdam and Brussels. According to her calculations, the speed of 220 
km/h was insufficient. These stringent requirements as well as the number of seats and the 
requested exclusive looks, defined a kind of train that didn’t exist at that time and one by one the 
manufacturers pulled out of the biding process. In the fall of 2003 two candidates remained: 
Alstom with trains running at 220 km/h and AnsaldoBreda with trains running at 230 km/h. 
During negotiations close to the deadline AnsaldoBreda offered an alternative that supposedly 
could run at 250 km/h, i.e. V250. Later that year, the concession holder decided that they would 
require fewer trains because of the much lower demand. Therefore, they ordered 12 instead of the 
initial 23 trains. Alstom pulled out of the tender because the order would be too small to justify 
the development costs. Consequently, AnsaldoBreda won the order for twelve V250s.  The order 
should be delivered by April 2006.  

The V250 was designed as an 8-car trainset, of which 3 coaches are used for first class 
accommodation, giving 127 first class seats out. The total train has a seated capacity of 546. To be 
able to operate on both Dutch and Belgian electrified networks the train was designed to operate 
on 3kV DC, 1.5kV DC and 25kV 50 Hz AC overhead power supply. The actual delivery date was 
postponed several times due to various reasons such as the late decision to implement ETCS-level 
2. Then there was also the fact that AnsaldoBreda had never designed a high-speed train before.
The company had great difficulties in complying with safety requirements and with maintaining 
build quality and engineering standards. Many components were (re)designed during the 
construction phase, and none of the trainsets were built completely equal.  

The inaugural service with the V250 took place on Sunday December 9th, 2012. During the 
weeks to follow many trains experienced delays or simply didn’t enter service due to various 
defects and operating errors. The winter snow of early 2013 damaged the trainsets to such an 
extent that they were banned from the tracks by the Dutch and Belgian certification institutes. 
Consequently, the old intercity services were reinstated as a temporary replacement for the V250-
Fyra, while AnsaldoBreda indicated that it would require several months to fix all problems. The 
contract with the manufacturer was finally terminated by June 3rd, 2013, as they were not able to 
fix the problems. The trains have been returned to the manufacturer by September 2014. 
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3.8 Niche alignment in the short distance high-speed regime 

The five niches described above show mixed results. Figure 5 shows the discrete 
contributions of the five niches to the outcome of the short-distance, high speed train travel in the 
Netherlands. The solid lines mean successful innovations, while the dashed lines mean 
unsuccessful innovations. 

Figure 5 - Regime buildup through niches 

Public-private partnerships were relatively successful when it comes to the different 
DBFMO-contracts for building rails, catenary et cetera, and the design & construct contracts for 
the foundation. The former is very successful when it comes to the development of a new record 
breaking diameter for the tunnel boring machine Aurora. However, the latter did significantly 
costs more as the builders were able to form cartels, exchange information and influence the 
bidding process. The tendering for the concession was a success as the State extracted a much 
higher price than anticipated.  However successful for the State, it impacted the ticket price NS 
would charge and as such affected market demands. All in all the public-private partnership 
innovation had a mildly positive effect on the design and development of the infrastructure.  

The building technique is clearly successful as the Aurora was able to dig faster than 
planned through difficult ground conditions and the Green Heart Tunnel was finished before the 

Market demands: 
1 – Modal split due to LCC (90s) 
2 – Travel time vs price (2011-
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2 – Limited # manufacturers (2004) 
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agreed deadline. The other techniques, e.g. a completely pillared track or long bridges, also 
contributed to the successful build of the track. 

The development of a European wide safety system took significantly longer due to many 
factors ranging from unclear definitions by the European Commission to unstable software 
releases and equipment failure. That is, the ERTMS / ETCS innovation delayed the building of 
both the track and the trains and significantly influenced the costs of building and operating HSL-
Zuid. 

The idea of using high-speed trains in order to affect consumer behavior and force a 
change in the modal split failed completely as travelers did not find the high-speed service 
compelling enough to pay a considerable surcharge in comparison to the price of car travel or 
regular train services. In addition, the unforeseen emergence of low cost carriers meant that 
travelers could now board faster, nearer to their homes at relatively low prices. As NS and the 
Dutch government learnt: high-speed railways are not automatically considered superior to other 
modes of travel. 

Lastly, the strict design demands as dictated by the concession, lead to a botched tendering 
process that drove NS into the arms of AnsaldoBreda and its untested, hurried proposal for the 
V250 trainsets.  The problems with AnsaldoBreda were intimately connected to the problems with 
ERTMS problems and with a lax quality assessment on behalf of NS and by the certification 
institution. The trains arrived 6 years after the deadline, to be taken out of commission a couple of 
weeks later. 

Ideally, niches all add up to a successful socio-technological innovation. In this particular 
case, it didn’t happen. The case very clearly demonstrates that the technological and social 
dimension are mutually dependent. It takes alignment of all niches – e.g. agreement over ERMTS 
and the technology to build trains – to move a step forwards. Even though certain socio-
technological innovations were successful they were not properly aligned with policy innovations 
such as public-private partnerships in such projects.  Ultimately, NS had to be saved from 
bankruptcy three times by the Dutch government in the years to follow. The current situation sees 
NS running make-shift services at a loss with a solution still being far away. 

4. Conclusion

We started this article with the observation that classical policy evaluations are geared 
towards finding that one variable that supposedly controls for all the problems encountered. In 
the political arena, this often boils down to pinpointing and blaming a person or organization, 
implementing an extra set of rules, and to move on. While we don’t want to fully deny the idea 
that someone can just have committed a grave error, we do believe that major public projects that 
includes innovative technology, such as HSL-Zuid, cannot be judged on the basis of simple 
premises about causes and effects. The case demonstrates that success of the newly developed 
short-distance high-speed railways depends on the alignment of underlying coevolving 
technological as well as social niches. Misalignment of these niches means that the innovation at 
the regime level takes place in starts and fits. It may also mean that the innovation in one niche 
propels or hinders the innovation in another niche, making the innovation at the regime level fail. 
This is not to say that innovation doesn’t take place at all – after all, progress has been made since 
the first ideas to launch a high-speed railway service in the 1970s – but that progress is haphazard 
and did not take place according to the policy goals and planning. Arguably, the socio-
technological innovation framework provides insights into why certain public policy innovations 
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were successful or not, without having to nail the failure to human error. That is, complexity-
informed theories about socio-technological innovation as the cumulation of evolving niches can 
lead to a considerably advanced appreciation of the complexity of public policies. 
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